scholarly journals Unleashing the Potential to Electrify Process Chemistry: From Bench to Plant

2021 ◽  
Vol 25 (12) ◽  
pp. 2579-2580
Author(s):  
Kevin Lam ◽  
Katherine M. P. Wheelhouse
Keyword(s):  
2014 ◽  
Vol 18 (3) ◽  
pp. 359-359 ◽  
Author(s):  
Will Watson
Keyword(s):  

Synlett ◽  
2021 ◽  
Vol 32 (02) ◽  
pp. 140-141
Author(s):  
Louis-Charles Campeau ◽  
Tomislav Rovis

obtained his PhD degree in 2008 with the late Professor Keith Fagnou at the University of Ottawa in Canada as an NSERC Doctoral Fellow. He then joined Merck Research Laboratories at Merck-Frosst in Montreal in 2007, making key contributions to the discovery of Doravirine (MK-1439) for which he received a Merck Special Achievement Award. In 2010, he moved from Quebec to New Jersey, where he has served in roles of increasing responsibility with Merck ever since. L.-C. is currently Executive Director and the Head of Process Chemistry and Discovery Process Chemistry organizations, leading a team of smart creative scientists developing innovative chemistry solutions in support of all discovery, pre-clinical and clinical active pharmaceutical ingredient deliveries for the entire Merck portfolio for small-molecule therapeutics. Over his tenure at Merck, L.-C. and his team have made important contributions to >40 clinical candidates and 4 commercial products to date. Tom Rovis was born in Zagreb in former Yugoslavia but was largely raised in southern Ontario, Canada. He earned his PhD degree at the University of Toronto (Canada) in 1998 under the direction of Professor Mark Lautens. From 1998–2000, he was an NSERC Postdoctoral Fellow at Harvard University (USA) with Professor David A. Evans. In 2000, he began his independent career at Colorado State University and was promoted in 2005 to Associate Professor and in 2008 to Professor. His group’s accomplishments have been recognized by a number of awards including an Arthur C. Cope Scholar, an NSF CAREER Award, a Fellow of the American Association for the Advancement of Science and a ­Katritzky Young Investigator in Heterocyclic Chemistry. In 2016, he moved to Columbia University where he is currently the Samuel Latham Mitchill Professor of Chemistry.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 459
Author(s):  
Zdeněk Krtouš ◽  
Lenka Hanyková ◽  
Ivan Krakovský ◽  
Daniil Nikitin ◽  
Pavel Pleskunov ◽  
...  

Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight “precursor”. As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers.


2006 ◽  
Vol 106 (7) ◽  
pp. 2617-2650 ◽  
Author(s):  
Elizabeth R. Burkhardt ◽  
Karl Matos
Keyword(s):  

2012 ◽  
Vol 84 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Pietro Tundo

Since the Industrial Revolution, chlorine has featured as an iconic molecule in process chemistry even though its production by electrolysis of sodium chloride is very energy-intensive. Owing to its high energy and reactivity, chlorine allows the manufacture of chlorinated derivatives in a very easy way: AlCl3, SnCl4, TiCl4, SiCl4, ZnCl2, PCl3, PCl5, POCl3, COCl2, etc. in turn are pillar intermediates in the production of numerous everyday goods. This kind of chloride chemistry is widely used because the energy is transferred to these intermediates, making further syntheses easy. The environmental and health constraints (toxicity and eco-toxicity, ozone layer depletion) and the growing need for energy (energy efficiency, climate change) force us to take advantage from available knowledge to develop new chemical strategies. Substitution of chlorine in end products in compounds where “chlorine is used in the making” means that we avoid electrolysis as primary energetic source; this makes chemistry “without chlorine” considerably more difficult and illustrates why it has not found favor in the past. The rationale behind this Special Topic issue is to seek useful and industrially relevant examples for alternatives to chlorine in synthesis, so as to facilitate the development of industrially relevant and implementable breakthrough technologies.


2001 ◽  
Vol 688 ◽  
Author(s):  
St. Schneider ◽  
H. Kohlstedt ◽  
R. Waser

AbstractNoble metals like platinum or irdium are used as electrode materials in DRAM or FRAM devices. Their etch process is a challenge as conventional, sputter driven etch processes either result in redeposition problems (fences) or in a severe sloping (loss of dimension control) and are not acceptable for high density integration architectures. The high temperature etch regime offers a solution by increasing the chemical etch component and thus the volatility of the etch products.As previously reported, the platinum etch rate increases exponentially for a chlorine etch process with increasing wafer temperature. In this study we investigate the particular role of carbon monoxide in a Cl2/CO etch process. We find that carbon monoxide additions to a chlorine process boost the chemical component of the platinum etch rate very significantly, exceeding the effects in the chlorine only process regime by far. Additionally we compare these results with a Cl2/O2 and a Cl2/CO2 process chemistry, which are not found to be particularly beneficial.To better understand the etch process we use an energy dispersive quadrupole mass spectrometer for in situ monitoring, attached to the chamber at two different locations. We are able to position the probe orifice at the place of the wafer electrode, to record ion energy and ion mass spectra of species impinging on the wafer plane. A second off axis position allows for etch product monitoring.


Sign in / Sign up

Export Citation Format

Share Document