Quantum Chemical and Molecular Docking Studies of [(η6-Cp*Rh-Tyr1)-Leu-enkephalin]2+ to G-Protein-Coupled μ-, ∂-, and κ-Opioid Receptors and Comparisons to the Neuropeptide [Tyr1]-Leu-enkephalin: Conformations, Noncovalent Amino Acid Binding Sites, Binding Energies, Electronic Factors, and Receptor Distortion Forces

2015 ◽  
Vol 34 (16) ◽  
pp. 4117-4126 ◽  
Author(s):  
Irena Efremenko ◽  
Richard H. Fish
2021 ◽  
Author(s):  
Stephanie E. Crilly ◽  
Wooree Ko ◽  
Zara Y. Weinberg ◽  
Manojkumar A. Puthenveedu

AbstractThe prevailing model for the variety in drug responses is that they stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand can produce different GPCR active states based on the environment of receptors in cells is a fundamental unanswered question. Here we address this question using live cell imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neurons. We show that, although Golgi and surface pools of DOR regulated cAMP, the two pools engaged distinct conformational biosensors in response to the same ligand. Further, DOR recruited arrestin on the plasma membrane but not the Golgi. Our results suggest that the same agonist drives different conformations of a GPCR at different locations, allowing receptor coupling to distinct effectors at different locations.


2021 ◽  
Vol 73 (4) ◽  
pp. 527-565
Author(s):  
Flavio Ballante ◽  
Albert J Kooistra ◽  
Stefanie Kampen ◽  
Chris de Graaf ◽  
Jens Carlsson

2019 ◽  
Vol 20 (24) ◽  
pp. 6218 ◽  
Author(s):  
Joseph T. Ortega ◽  
Beata Jastrzebska

G protein-coupled receptors (GPCRs) play a predominant role in the drug discovery effort. These cell surface receptors are activated by a variety of specific ligands that bind to the orthosteric binding pocket located in the extracellular part of the receptor. In addition, the potential binding sites located on the surface of the receptor enable their allosteric modulation with critical consequences for their function and pharmacology. For decades, drug discovery focused on targeting the GPCR orthosteric binding sites. However, finding that GPCRs can be modulated allosterically opened a new venue for developing novel pharmacological modulators with higher specificity. Alternatively, focus on discovering of non-retinoid small molecules beneficial in retinopathies associated with mutations in rhodopsin is currently a fast-growing pharmacological field. In this review, we summarize the accumulated knowledge on retinoid ligands and non-retinoid modulators of the light-sensing GPCR, rhodopsin and their potential in combating the specific vision-related pathologies. Also, recent findings reporting the potential of biologically active compounds derived from natural products as potent rod opsin modulators with beneficial effects against degenerative diseases related to this receptor are highlighted here.


Sign in / Sign up

Export Citation Format

Share Document