scholarly journals Amorphous Framework in Electrodeposited CuBiTe Thermoelectric Thin Films with High Room-Temperature Performance

2021 ◽  
Vol 3 (4) ◽  
pp. 1794-1803 ◽  
Author(s):  
N. Padmanathan ◽  
Swatchith Lal ◽  
Devendraprakash Gautam ◽  
Kafil M. Razeeb
2020 ◽  
Vol 712 ◽  
pp. 138311
Author(s):  
Xudong Tao ◽  
Kening Wan ◽  
Bryan W. Stuart ◽  
Emiliano Bilotti ◽  
Hazel E. Assender

2016 ◽  
Vol 42 (10) ◽  
pp. 12490-12495 ◽  
Author(s):  
Kexiong Zhou ◽  
Jikun Chen ◽  
RenKui Zheng ◽  
Xinyou Ke ◽  
Tiansong Zhang ◽  
...  

Author(s):  
Peng Gao ◽  
Zhenyu Hu ◽  
Longhui Deng ◽  
Tingjun Wu ◽  
Qikai Li ◽  
...  

The preparation of high-performance thermoelectric thin films can be challenging. Herein, we report the preparation, characterization, and thermoelectric performance of morphology-controlled bismuth sulfide (Bi2S3) thin films using a single-source precursor...


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Cheng-Fu Yang ◽  
Wei Chen

The antimony-telluride (Sb2Te3) thermoelectric thin films were prepared on SiO2/Si substrates by thermal evaporation method. The substrate temperature that ranged from room temperature to 150°C was adopted to deposit the Sb2Te3thin films. The effects of substrate temperature on the microstructures and thermoelectric properties of the Sb2Te3thin films were investigated. The crystal structure and surface morphology of the Sb2Te3thin films were characterized by X-ray diffraction analyses and field emission scanning electron microscope observation. The RT-deposited Sb2Te3thin films showed the amorphous phase. Te and Sb2Te3phases were coexisted in the Sb2Te3-based thin films as the substrate temperature was higher than room temperature. The average grain sizes of the Sb2Te3-based thin films were 39 nm, 45 nm, 62 nm, 84 nm, and 108 nm, as the substrate temperatures were 50°C, 75°C, 100°C, 125°C, and 150°C, respectively. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature; we had found that they were critically dependent on the substrate temperature.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6929
Author(s):  
Giovanna Latronico ◽  
Saurabh Singh ◽  
Paolo Mele ◽  
Abdalla Darwish ◽  
Sergey Sarkisov ◽  
...  

The effect of SnO2 addition (0, 1, 2, 4 wt.%) on thermoelectric properties of c-axis oriented Al-doped ZnO thin films (AZO) fabricated by pulsed laser deposition on silica and Al2O3 substrates was investigated. The best thermoelectric performance was obtained on the AZO + 2% SnO2 thin film grown on silica, with a power factor (PF) of 211.8 μW/m·K2 at 573 K and a room-temperature (300 K) thermal conductivity of 8.56 W/m·K. PF was of the same order of magnitude as the value reported for typical AZO bulk material at the same measurement conditions (340 μW/m·K2) while thermal conductivity κ was reduced about four times.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
S.K. Streiffer ◽  
C.B. Eom ◽  
J.C. Bravman ◽  
T.H. Geballet

The study of very thin (<15 nm) YBa2Cu3O7−δ (YBCO) films is necessary both for investigating the nucleation and growth of films of this material and for achieving a better understanding of multilayer structures incorporating such thin YBCO regions. We have used transmission electron microscopy to examine ultra-thin films grown on MgO substrates by single-target, off-axis magnetron sputtering; details of the deposition process have been reported elsewhere. Briefly, polished MgO substrates were attached to a block placed at 90° to the sputtering target and heated to 650 °C. The sputtering was performed in 10 mtorr oxygen and 40 mtorr argon with an rf power of 125 watts. After deposition, the chamber was vented to 500 torr oxygen and allowed to cool to room temperature. Because of YBCO’s susceptibility to environmental degradation and oxygen loss, the technique of Xi, et al. was followed and a protective overlayer of amorphous YBCO was deposited on the just-grown films.


Author(s):  
Pamela F. Lloyd ◽  
Scott D. Walck

Pulsed laser deposition (PLD) is a novel technique for the deposition of tribological thin films. MoS2 is the archetypical solid lubricant material for aerospace applications. It provides a low coefficient of friction from cryogenic temperatures to about 350°C and can be used in ultra high vacuum environments. The TEM is ideally suited for studying the microstructural and tribo-chemical changes that occur during wear. The normal cross sectional TEM sample preparation method does not work well because the material’s lubricity causes the sandwich to separate. Walck et al. deposited MoS2 through a mesh mask which gave suitable results for as-deposited films, but the discontinuous nature of the film is unsuitable for wear-testing. To investigate wear-tested, room temperature (RT) PLD MoS2 films, the sample preparation technique of Heuer and Howitt was adapted.Two 300 run thick films were deposited on single crystal NaCl substrates. One was wear-tested on a ball-on-disk tribometer using a 30 gm load at 150 rpm for one minute, and subsequently coated with a heavy layer of evaporated gold.


Sign in / Sign up

Export Citation Format

Share Document