Surface Plasmonic Resonance and Z-Scheme Charge Transport Synergy in Three-Dimensional Flower-like Ag–CeO2–ZnO Heterostructures for Highly Improved Photocatalytic CO2 Reduction

Author(s):  
Samah A. Mahyoub ◽  
Abdo Hezam ◽  
Fahim A. Qaraah ◽  
Keerthiraj Namratha ◽  
Mysore B. Nayan ◽  
...  



2015 ◽  
Vol 32 (6) ◽  
pp. 577
Author(s):  
Minghuai Yu ◽  
Jun Song ◽  
Junle Qu ◽  
Hanben Niu


Author(s):  
Yingchun Zhang ◽  
Changsheng Cao ◽  
Xintao Wu ◽  
Qi-Long Zhu

Bismuth (Bi)-based nanomaterials are considered as the promising electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR), but it is challenging to achieve high current density and selectivity in a wide potential...



RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2733-2743
Author(s):  
Parisa Talebi ◽  
Harishchandra Singh ◽  
Ekta Rani ◽  
Marko Huttula ◽  
Wei Cao

Surface plasmonic resonance enabled Ni@NiO/NiCO3 core–shell nanostructures as promising photocatalysts for hydrogen evolution under visible light.



2021 ◽  
Vol 17 ◽  
pp. 100358
Author(s):  
R. Cheng ◽  
C.-C. Chung ◽  
S. Wang ◽  
B. Cao ◽  
M. Zhang ◽  
...  




Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...



2015 ◽  
Vol 1737 ◽  
Author(s):  
Cristiano F. Woellner ◽  
Leonardo D. Machado ◽  
Pedro A. S. Autreto ◽  
José A. Freire ◽  
Douglas S. Galvão

ABSTRACTIn this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.





Author(s):  
Tewfik Souier

In this chapter, the main scanning probe microscopy-based methods to measure the transport properties in advanced polymer-Carbon Nanotubes (CNT) nanocomposites are presented. The two major approaches to investigate the electrical and charge transport (i.e., Electrostatic Force Microscopy [EFM] and Current-Sensing Atomic Force Microscopy [CS-AFM]) are illustrated, starting from their basic principles. First, the authors show how the EFM-related techniques can be used to provide, at high spatial resolution, a three-dimensional representation CNT networks underneath the surface. This allows the studying of the role of nanoscopic features such as CNTs, CNT-CNT direct contact, and polymer-CNT junctions in determining the overall composite properties. Complementary, CS-AFM can bring insight into the transport mechanism by imaging the spatial distribution of currents percolation paths within the nanocomposite. Finally, the authors show how the CS-AFM can be used to quantify the surface/bulk percolation probability and the nanoscopic electrical conductivity, which allows one to predict the macroscopic percolation model.



Sign in / Sign up

Export Citation Format

Share Document