Electrohydrodynamic Sprayable Amphiphilic Polysaccharide-Clasped Nanoscale Self-Assembly for In Vivo Imaging

2020 ◽  
Vol 12 (35) ◽  
pp. 38899-38905
Author(s):  
Jeong Chan Park ◽  
Do Hyeon Kim ◽  
Young Hoon Song ◽  
Hyung Joon Cha ◽  
Jeong Hyun Seo
2019 ◽  
Vol 141 (26) ◽  
pp. 10331-10341 ◽  
Author(s):  
Runqi Yan ◽  
Yuxuan Hu ◽  
Fei Liu ◽  
Shixuan Wei ◽  
Daqing Fang ◽  
...  

Author(s):  
Yuqi Wang ◽  
Jianhui Weng ◽  
Xidan Wen ◽  
Yuxuan Hu ◽  
Deju Ye

Stimuli-responsive in situ self-assembly of small molecule probes into nanostructures has been promising for the construction of molecular probes for in vivo imaging.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S588-S588
Author(s):  
Vladimir Kepe ◽  
Gregory M Cole ◽  
Jie Liu ◽  
Dorothy G Flood ◽  
Stephen P Trusko ◽  
...  

2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2020 ◽  
Author(s):  
J Iking ◽  
S Hermann ◽  
L Honold ◽  
M Kuhlmann ◽  
M Schäfers ◽  
...  

2016 ◽  
Author(s):  
Alysha Bhatti ◽  
Almeida Gilberto Serrano de ◽  
Serena Tommasini Ghelfi ◽  
Alwyn Dart ◽  
Anabel Varela-Carver ◽  
...  

2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


Sign in / Sign up

Export Citation Format

Share Document