Flexible Slippery Surface to Manipulate Droplet Coalescence and Sliding, and Its Practicability in Wind-Resistant Water Collection

2017 ◽  
Vol 9 (29) ◽  
pp. 24428-24432 ◽  
Author(s):  
Yuanfeng Wang ◽  
Baitai Qian ◽  
Chuilin Lai ◽  
Xiaowen Wang ◽  
Kaikai Ma ◽  
...  
2020 ◽  
Vol 2 (4) ◽  
pp. 1473-1482
Author(s):  
Hui Zhou ◽  
Xueshan Jing ◽  
Zhiguang Guo

The flexible lubricant-infused surface can realize the slipping of pinned droplets based on the high degree of deformation generated by strain/release, which highly enhances its water collection efficiency and service life.


2019 ◽  
Vol 4 (9) ◽  
Author(s):  
Jhoan Toro-Mendoza ◽  
Oscar Paredes-Altuve ◽  
Miguel A. Velasquez ◽  
Dimiter N. Petsev
Keyword(s):  

2021 ◽  
Vol 18 (3) ◽  
pp. 501-533
Author(s):  
Kui Wan ◽  
Xuelian Gou ◽  
Zhiguang Guo

AbstractWith the explosive growth of the world’s population and the rapid increase in industrial water consumption, the world’s water supply has fallen into crisis. The shortage of fresh water resources has become a global problem, especially in arid regions. In nature, many organisms can collect water from foggy water under harsh conditions, which provides us with inspiration for the development of new functional fog harvesting materials. A large number of bionic special wettable synthetic surfaces are synthesized for water mist collection. In this review, we introduce some water collection phenomena in nature, outline the basic theories of biological water harvesting, and summarize six mechanisms of biological water collection: increased surface wettability, increased water transmission area, long-distance water delivery, water accumulation and storage, condensation promotion, and gravity-driven. Then, the water collection mechanisms of three typical organisms and their synthesis are discussed. And their function, water collection efficiency, new developments in their biomimetic materials are narrated, which are cactus, spider and desert beetles. The study of multiple bionics was inspired by the discovery of Nepenthes’ moist and smooth peristome. The excellent characteristics of a variety of biological water collection structures, combined with each other, are far superior to other single synthetic surfaces. Furthermore, the main problems in the preparation and application of biomimetic fog harvesting materials and the future development trend of materials fog harvesting are prospected.


2021 ◽  
Vol 33 (8) ◽  
pp. 085112
Author(s):  
Ianto Cannon ◽  
Daulet Izbassarov ◽  
Outi Tammisola ◽  
Luca Brandt ◽  
Marco E. Rosti

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wasim Jamshed ◽  
Mohamed R. Eid ◽  
Kottakkaran Sooppy Nisar ◽  
Nor Ain Azeany Mohd Nasir ◽  
Abhilash Edacherian ◽  
...  

AbstractThe current investigation aims to examine heat transfer as well as entropy generation analysis of Powell-Eyring nanofluid moving over a linearly expandable non-uniform medium. The nanofluid is investigated in terms of heat transport properties subjected to a convectively heated slippery surface. The effect of a magnetic field, porous medium, radiative flux, nanoparticle shapes, viscous dissipative flow, heat source, and Joule heating are also included in this analysis. The modeled equations regarding flow phenomenon are presented in the form of partial-differential equations (PDEs). Keller-box technique is utilized to detect the numerical solutions of modeled equations transformed into ordinary-differential equations (ODEs) via suitable similarity conversions. Two different nanofluids, Copper-methanol (Cu-MeOH) as well as Graphene oxide-methanol (GO-MeOH) have been taken for our study. Substantial results in terms of sundry variables against heat, frictional force, Nusselt number, and entropy production are elaborate graphically. This work’s noteworthy conclusion is that the thermal conductivity in Powell-Eyring phenomena steadily increases in contrast to classical liquid. The system’s entropy escalates in the case of volume fraction of nanoparticles, material parameters, and thermal radiation. The shape factor is more significant and it has a very clear effect on entropy rate in the case of GO-MeOH nanofluid than Cu-MeOH nanofluid.


2021 ◽  
Vol 415 ◽  
pp. 128953
Author(s):  
Sicheng Yuan ◽  
Jianwen Peng ◽  
Xiguang Zhang ◽  
Dan Lin ◽  
Haolei Geng ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 13760-13770
Author(s):  
Hailang Wan ◽  
Junying Min ◽  
Blair E. Carlson ◽  
Jianping Lin ◽  
Chengcheng Sun

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Muhammad Amer Qureshi

In this paper, heat transfer and entropy of steady Williamson nanofluid flow based on the fundamental symmetry is studied. The fluid is positioned over a stretched flat surface moving non-uniformly. Nanofluid is analyzed for its flow and thermal transport properties by consigning it to a convectively heated slippery surface. Thermal conductivity is assumed to be varied with temperature impacted by thermal radiation along with axisymmetric magnetohydrodynamics (MHD). Boundary layer approximations lead to partial differential equations, which are transformed into ordinary differential equations in light of a single phase model accounting for Cu-water and TiO2-water nanofluids. The resulting ODEs are solved via a finite difference based Keller box scheme. Various formidable physical parameters affecting fluid movement, difference in temperature, system entropy, skin friction and Nusselt number around the boundary are presented graphically and numerically discussed. It has also been observed that the nanofluid based on Cu-water is identified as a superior thermal conductor rather than TiO2-water based nanofluid.


Sign in / Sign up

Export Citation Format

Share Document