scholarly journals Correction to “Band Gap Engineering and Room-Temperature Ferromagnetism by Oxygen Vacancies in SrSnO3 Epitaxial Films”

2019 ◽  
Vol 11 (19) ◽  
pp. 18051-18051 ◽  
Author(s):  
Qiang Gao ◽  
Hengli Chen ◽  
Kaifeng Li ◽  
Qinzhuang Liu
2013 ◽  
Vol 1577 ◽  
Author(s):  
Sreekanth K. Mahadeva ◽  
Zhi-Yong Quan ◽  
Jin-Cheng Fan ◽  
Hasan B. Albargi ◽  
Gillian A Gehring ◽  
...  

ABSTRACTMg doped ZnO thin films were prepared by DC/RF magnetron co-sputtering in (Ar+O2) ambient conditions using metallic Mg and Zn targets. We present a comprehensive study of the effects of film thickness on the structural, optical and magnetic properties. Room temperature ferromagnetism was observed in the films and the saturation magnetization (MS) increases at first as the film’s thickness increases and then decreases. The MS value as high as ∼15.76 emu/cm3 was achieved for the Mg-doped ZnO film of thickness 120 nm. The optical band gap of the films determined to be in the range 3.42 to 3.52 eV.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Marija Stojmenović ◽  
Maja C. Pagnacco ◽  
Vladimir Dodevski ◽  
Jelena Gulicovski ◽  
Milan Žunić ◽  
...  

The nanopowdery solid solutions of multidoped ceria Ce0.8Nd0.0025Sm0.0025Gd0.005Dy0.095Y0.095O2-δ(x=0.2) with the fluorite type crystal structure of CeO2were synthesized for the first time. Two synthesis procedures were applied: the modified glycine-nitrate procedure (MGNP method) and room temperature self-propagating reaction (SPRT method). All nanopowders were characterized by XRPD analysis, Raman spectroscopy, low temperature nitrogen physisorption, TEM, and SEM methods. According to the XRPD and Raman spectroscopy results, single phase solid solutions of fluorite structure were evidenced regardless of the number of dopants and synthesis procedure. Both XRPD and TEM were analyses evidenced nanometer particle dimensions. The SPRT method results in obtaining sample with higher specific surface area, smaller crystallite and particles sizes, and the same values of the lattice parameter in comparison to pure CeO2. Raman spectroscopy was confirmed to the oxygen vacancies introduced into the ceria lattice when Ce4+ions were replaced with cations (dopants) of lower valence state (3+), which may indicate the potential improvement of ionic conductivity. Additionally, the presence of oxygen vacancies in the lattice ceria, as well as very developed grain boundaries, gives a new possibility for potential application of obtained nanopowders in the area of room temperature ferromagnetism as spintronics.


2017 ◽  
Vol 30 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Dan Nie ◽  
Jiang Zhang ◽  
Wen-ji Deng ◽  
Xi Chen ◽  
Zhong-quan Mao ◽  
...  

2015 ◽  
Vol 200 ◽  
pp. 22-27 ◽  
Author(s):  
Xue Hou ◽  
Huiyuan Liu ◽  
Huiyuan Sun ◽  
Lihu Liu ◽  
Xiaoxuan Jia

2019 ◽  
Vol 109 ◽  
pp. 101-106 ◽  
Author(s):  
Dongsheng Gao ◽  
Xiangdong Gao ◽  
Yongqing Wu ◽  
Tongtong Zhang ◽  
Jingnan Yang ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 1438-1441
Author(s):  
Wei Zhang ◽  
He Ping Li ◽  
Wei Pan

In this article, Co-doped SrTiO3 nanofibres have been prepared by electrospinning from a sol-gel precursor and the following calcination at 923K. XRD results confirmed that no second phase was formed, and Co ions successfully occupied the Ti sites. By annealing in hydrogen, oxygen vacancies and (Co-H-Co) were formed, which both contributed to the magnetic ordering in SrTi1-xCoxO3 nanofibres are at 300K.


2009 ◽  
Vol 106 (8) ◽  
pp. 083515 ◽  
Author(s):  
Javed Iqbal ◽  
Xiaofang Liu ◽  
Huichao Zhu ◽  
Chongchao Pan ◽  
Yong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document