Enhanced Thermoelectric Properties of p-Type CaMg2Bi2 via a Synergistic Effect Originated from Zn and Alkali-Metal Co-doping

2020 ◽  
Vol 12 (5) ◽  
pp. 6015-6021 ◽  
Author(s):  
Muchun Guo ◽  
Fengkai Guo ◽  
Jianbo Zhu ◽  
Li Yin ◽  
Haixu Qin ◽  
...  
2020 ◽  
Vol 8 (7) ◽  
pp. 3978-3987 ◽  
Author(s):  
Raza Moshwan ◽  
Wei-Di Liu ◽  
Xiao-Lei Shi ◽  
Qiang Sun ◽  
Han Gao ◽  
...  

In eco-friendly SnTe thermoelectrics, In and Ag co-doping induces the synergistic effect of resonance energy levels and valence band convergence to enhance its electrical transport properties, while defects ameliorates its thermal transport.


2018 ◽  
Vol 143 ◽  
pp. 265-271 ◽  
Author(s):  
Zhensong Ren ◽  
Jing Shuai ◽  
Jun Mao ◽  
Qing Zhu ◽  
Shaowei Song ◽  
...  

2021 ◽  
Vol 127 ◽  
pp. 105721
Author(s):  
Suchitra Yadav ◽  
Sujeet Chaudhary ◽  
Dinesh K. Pandya

Author(s):  
Dong Han ◽  
Rahma Moalla ◽  
Ignasi Fina ◽  
Valentina M. Giordano ◽  
Marc d’Esperonnat ◽  
...  

Author(s):  
Vidushi Galwadu Arachchige ◽  
Hasbuna Kamila ◽  
Aryan Sankhla ◽  
Léo Millerand ◽  
Silvana Tumminello ◽  
...  

2019 ◽  
Vol 7 (16) ◽  
pp. 4817-4821 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Resonance states due to Bi and In co-doping, band gap enlargement, and a reduced valence-band offset in SnTe lead to a record high room-temperature ZT.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3448
Author(s):  
Francisco Arturo López Cota ◽  
José Alonso Díaz-Guillén ◽  
Oscar Juan Dura ◽  
Marco Antonio López de la Torre ◽  
Joelis Rodríguez-Hernández ◽  
...  

This contribution deals with the mechanochemical synthesis, characterization, and thermoelectric properties of tetrahedrite-based materials, Cu12-xMxSb4S13 (M = Fe2+, Zn2+, Cd2+; x = 0, 1.5, 2). High-energy mechanical milling allows obtaining pristine and substituted tetrahedrites, after short milling under ambient conditions, of stoichiometric mixtures of the corresponding commercially available binary sulfides, i.e., Cu2S, CuS, Sb2S3, and MS (M = Fe2+, Zn2+, Cd2+). All the target materials but those containing Cd were obtained as single-phase products; some admixture of a hydrated cadmium sulfate was also identified by XRD as a by-product when synthesizing Cu10Cd2Sb4S13. The as-obtained products were thermally stable when firing in argon up to a temperature of 350–400 °C. Overall, the substitution of Cu(II) by Fe(II), Zn(II), or Cd(II) reduces tetrahedrites’ thermal and electrical conductivities but increases the Seebeck coefficient. Unfortunately, the values of the thermoelectric figure of merit obtained in this study are in general lower than those found in the literature for similar samples obtained by other powder processing methods; slight compositional changes, undetected secondary phases, and/or deficient sintering might account for some of these discrepancies.


Sign in / Sign up

Export Citation Format

Share Document