Pd Nanoparticles Loaded on CoAlCe Layered Double Oxide Nanosheets for Phenol Hydrogenation

Author(s):  
Haiping Li ◽  
Xue Wang ◽  
Yanan Liu ◽  
Yufei He ◽  
Junting Feng ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (124) ◽  
pp. 102811-102817 ◽  
Author(s):  
Fengwei Zhang ◽  
Shuai Chen ◽  
Huan Li ◽  
Xian-Ming Zhang ◽  
Hengquan Yang

The Pd/MCN@MS-NH2catalyst simultaneously contains a hydrophobic carbon core and a hydrophilic silica shell, which is inclined to concentrate the phenol substrate around the active Pd NPs and exclude the cyclohexanone product from the catalyst surface.


Author(s):  
Lihui Fan ◽  
Luyang Zhang ◽  
Yanming Shen ◽  
Dongbin Liu ◽  
Nasarul Wahab ◽  
...  

<p>The ZSM-5, g-Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> and MgO supported Pd-catalysts were prepared for the phenol hydrogenation to cyclohexanone in liquid-phase. The natures of these catalysts were characterized by XRD, N<sub>2</sub> adsorption-desorption analysis, H<sub>2</sub>-TPR, CO<sub>2</sub>-TPD and NH<sub>3</sub>-TPD. The catalytic performance of the supported Pd-catalyst for phenol hydrogenation to cyclohexanone is closely related to nature of the support and the size of Pd nanoparticles. The Pd/MgO catalyst which possesses higher basicity shows higher cyclohexanone selectivity, but lower phenol conversion owing to the lower specific surface area. The Pd/SiO<sub>2</sub> catalyst prepared by precipitation gives higher cyclohexanone selectivity and phenol conversion, due to the moderate amount of Lewis acidic sites, and the smaller size and higher dispersion of Pd nanoparticles on the surface. Under the reaction temperature of 135 <sup>o</sup>C and H<sub>2</sub> pressure of 1 MPa, after reacting for 3.5 h, the phenol conversion of 71.62% and the cyclohexanone selectivity of 90.77% can be obtained over 0.5 wt% Pd/SiO<sub>2</sub> catalyst. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 7<sup>th</sup> March 2016; Revised: 13<sup>rd</sup> May 2016; Accepted: 7<sup>th</sup> June 2016</em></p><p><strong>How to Cite:</strong> Fan, L., Zhang, L., Shen, Y., Liu, D., Wahab, N., Hasan, M.M. (2016). Liquid-phase Hydrogenation of Phenol to Cyclohexanone over Supported Palladium Catalysts. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (3): 354-362 (doi: 10.9767/bcrec.11.3.575.354-362)</p><p><strong>Permalink/DOI</strong>: <a href="http://doi.org/10.9767/bcrec.11.3.575.354-362">http://doi.org/10.9767/bcrec.11.3.575.354-362</a></p>


2016 ◽  
Vol 6 (4) ◽  
pp. 1003-1006 ◽  
Author(s):  
Liyun Zhang ◽  
Bolun Wang ◽  
Yuxiao Ding ◽  
Guodong Wen ◽  
Sharifah Bee Abd Hamid ◽  
...  

Inactive annealed Pd NPs can be disintegratively re-dispersed and re-activated through a HNO3 vapour treatment for enhanced catalytic phenol hydrogenation.


2019 ◽  
Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>


Author(s):  
Heng Xia ◽  
Hong-Zi Tan ◽  
Hongyou Cui ◽  
Feng Song ◽  
Yuan Zhang ◽  
...  

Hydrogenation of phenol is an important strategy to produce cyclohexane or cyclohexanol as both of them are raw materials for the synthesis of nylon-6 and nylon-66. Herein, we report a...


Sign in / Sign up

Export Citation Format

Share Document