para-Aramid Nanofiber Membranes for High-Performance and Multifunctional Materials

Author(s):  
Wei Tang ◽  
Sirui Fu ◽  
Nian Luo ◽  
Qiang Fu ◽  
Feng Chen
Biomimetics ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 40 ◽  
Author(s):  
Pietro Melone ◽  
Giuseppe Vitiello ◽  
Michela Di Napoli ◽  
Anna Zanfardino ◽  
Maria Federica Caso ◽  
...  

Nature has provided a valuable source of inspiration for developing high performance multifunctional materials. Particularly, catechol-containing amino acid l-3,4-dihydroxyphenylalanine (l-DOPA) has aroused the interest to design hybrid multifunctional materials with superior adhesive ability. DOPA oxidative polymerization mediated by either melanogenic enzymes or an alkaline environment involving catechol intermolecular cross-linking, ultimately leads to melanin oligomers. Recently, relevant studies disclosed the ability of Ti-based nanostructures to tune melanin’s supramolecular structure during its formation, starting from melanogenic precursors, thus improving both antioxidant and antimicrobial properties. In this work, we propose a novel biomimetic approach to design hybrid DOPA melanin-like nanostructures through a hydrothermal synthesis opportunely modified by using citric acid to control hydrolysis and condensation reactions of titanium alkoxide precursors. UV-Vis and Electron paramagnetic resonance (EPR) spectroscopic evidences highlighted the key role of citrate–Ti(IV) and DOPA–Ti(IV) complexes in controlling DOPA polymerization, which specifically occurred during the hydrothermal step, mediating and tuning its conversion to melanin-like oligomers. Trasmission electron microscopy (TEM) images proved the efficacy of the proposed synthesis approach in tuning the formation of nanosized globular nanostructures, with high biocide performances. The obtained findings could provide strategic guidelines to set up biomimetic processes, exploiting the catechol-metal complex to obtain hybrid melanin-like nanosystems with optimized multifunctional behavior.


2018 ◽  
Vol 29 (11) ◽  
pp. 1692-1697 ◽  
Author(s):  
Fangyuan Zhao ◽  
Xin Zhao ◽  
Bo Peng ◽  
Feng Gan ◽  
Mengyao Yao ◽  
...  

Author(s):  
Huixian Zhou ◽  
Yutang Kang ◽  
Hui zhong ◽  
Bin Chen ◽  
Shuanglu Ma ◽  
...  

The strategy of constructing catalytic membrane has a significant influence on its structure and performance. In this work, Co3O4-Cx@SiO2 nanofiber membranes (NFMs) were fabricated by an in-situ growth–pyrolysis–oxidation strategy. The Co3O4-Cx catalyst derived from ZIF-67 was wrapped around nanofibers, which helps to maintain a stable membrane structure, then suppressing the reduction of gas permeability. Among the Co3O4-Cx catalyst, the carbon skeleton can prevent the agglomeration of Co3O4 nanoparticles, obtaining an ultra-fine Co3O4 nanoparticles with high dispersibility, redox property and surface area. The obtained Co3O4-C300@SiO2 NFM exhibits excellent filtration efficiency and low pressure drop for PM2.5 (99.99% and 55 Pa) and outstanding catalytic performance with T90 of 245 °C for NH3-SCR, which is 40.3% higher than that of Co3O4@SiO2 NFM. This work might provide a universal strategy for the preparation of catalytic membrane with high-performance.


2018 ◽  
Vol 31 (4) ◽  
pp. 438-448 ◽  
Author(s):  
Bo Yi ◽  
Yuntao Zhao ◽  
Enling Tian ◽  
Jing Li ◽  
Yiwei Ren

Polyimide (PI) nanofiber membranes were successfully prepared from a PI/N-methyl-2-pyrrolidone (NMP) solution via electrospinning. This technique simply and facilely produced efficient high-performance PI fibers. The morphology, surface wettability, thermal stability, mechanical properties, and filtration performance of the as-prepared PI nanofiber membranes were characterized in detail. The membranes exhibited smooth and hydrophobic surfaces. The nanofibers were well distributed in the membranes with fiber diameters in the range of 140–400 nm. All the PI nanofiber membranes showed excellent thermostability, and their initial decomposition temperature ( Td) and heat resistance temperature ( THRI) exceeded 544.4°C and 198.8°C, respectively. The PI nanofiber membranes also possessed reasonable mechanical properties with a tensile strength and a Young’s modulus reaching 10.5 and 927.6 MPa, respectively. Regarding the filtration performance, the developed nanofiber membranes achieved the best filtration efficiency of 90.4%. Such electrospun PI nanofiber membranes can be a promising candidate for hot gas filtration.


Sign in / Sign up

Export Citation Format

Share Document