scholarly journals SIRT5 Represses Neurotrophic Pathways and Aβ Production in Alzheimer’s Disease by Targeting Autophagy

Author(s):  
Shanshan Wu ◽  
Yafen Wei ◽  
Jingxin Li ◽  
Yan Bai ◽  
Ping Yin ◽  
...  
2021 ◽  
pp. 1-17
Author(s):  
Alvaro Miranda ◽  
Enrique Montiel ◽  
Henning Ulrich ◽  
Cristian Paz

Alzheimer’s disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979, Verubecestat, LY2886721, Lanabecestat, LY2811376, and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse the disease. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and the activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.


2002 ◽  
Vol 30 (4) ◽  
pp. 525-529 ◽  
Author(s):  
B. Wolozin

Accumulation of a 40–42-amino acid peptide, termed amyloid-β peptide (Aβ), is associated with Alzheimer's disease (AD), and identifying medicines that inhibit Aβ could help patients with AD. Recent evidence suggests that a class of medicines that lower cholesterol by blocking the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), termed statins, can inhibit Aβ production. Increasing evidence suggests that the enzymes that generate Aβ function best in a high-cholesterol environment, which might explain why reducing cholesterol would inhibit Aβ production. Studies using both neurons and peripheral cells show that reducing cellular cholesterol levels, by stripping off the cholesterol with methyl-β-cyclodextrin or by treating the cells with HMG-CoA reductase inhibitors, decreases Aβ production. Studies performed on animal models and on humans concur with these results. In humans, lovastatin, an HMG-CoA reductase inhibitor, has been shown to reduce Aβ levels in blood of patients by up to 40%. The putative role of Aβ in AD raises the possibility that treating patients with statins might lower Aβ, and thereby either delay the occurrence of AD or retard the progression of AD. Two large retrospective studies support this hypothesis. Both studies suggest that patients taking statins had an approx. 70% lower risk of developing AD. Since statins are widely used by doctors, their ability to reduce Aβ offers a putative therapeutic strategy for treating AD by using medicines that have already been proved safe to use in humans.


Author(s):  
Qi Wu ◽  
Leonardo Cortez ◽  
Razieh Kamali-Jamil ◽  
Valerie Sim ◽  
Holger Wille ◽  
...  

Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play a critical role in the development of Alzheimer's disease (AD) pathology. Aβ-containing neuronal exosomes, which represent a novel form of intercellular communication, have been shown to influence function/vulnerability of neurons in AD. Unlike neurons, the significance of exosomes derived from astrocytes remains unclear. In this study, we evaluated the significance of exosomes derived from U18666A-induced cholesterol-accumulated astrocytes in the development of AD pathology. Our results show that cholesterol accumulation decreases exosome secretion, whereas lowering cholesterol level increases exosome secretion from cultured astrocytes. Interestingly, exosomes secreted from U18666A-treated astrocytes contain higher levels of APP, APP-CTFs, soluble APP, APP secretases and Aβ1-40 than exosomes secreted from control astrocytes. Furthermore, we show that exosomes derived from U18666A-treated astrocytes can lead to neurodegeneration, which is attenuated by decreasing Aβ production or by neutralizing exosomal Aβ peptide with an Aβ antibody. These results, taken together, suggest that exosomes derived from cholesterol-accumulated astrocytes can play an important role in trafficking APP/Aβ peptides and influencing neuronal viability in the affected regions of the AD brain.


2019 ◽  
Author(s):  
Tatiana Burrinha ◽  
Ricardo Gomes ◽  
Ana Paula Terrasso ◽  
Cláudia Guimas Almeida

AbstractAging increases the risk of Alzheimer’s disease (AD). During normal aging synapses decline and β-Amyloid (Aβ) accumulates. An Aβ defective clearance with aging is postulated as responsible for Aβ accumulation, although a role for increased Aβ production with aging can also lead to Aβ accumulation. To test this hypothesis, we established a long-term culture of primary mouse neurons that mimics neuronal aging (lysosomal lipofuscin accumulation and synapse decline). Intracellular endogenous Aβ42 accumulated in aged neurites due to increased amyloid-precursor protein (APP) processing. We show that APP processing is up-regulated by a specific age-dependent increase in APP endocytosis. Endocytosed APP accumulated in early endosomes that, in turn were found augmented in aged neurites. APP processing and early endosomes up-regulation was recapitulated in vivo. Finally, we found that inhibition of Aβ production reduced the decline in synapses in aged neurons. We propose that potentiation of APP endocytosis by neuronal aging increases Aβ production, which contributes to aging-dependent decline in synapses.SummaryHow aging increases the risk of Alzheimer’s disease is not clear. We show that normal neuronal aging increases the intracellular production of β-amyloid, due to an upregulation of the amyloid precursor protein endocytosis. Importantly, increased Aβ production contributes to the aging-dependent synapse loss.


2021 ◽  
Author(s):  
Meiting Li ◽  
Nan Cai ◽  
Liang Gu ◽  
Lijun Yao ◽  
Decheng Bi ◽  
...  

Abstract Alzheimer’s disease (AD) is a devastating brain disorder characterized by neurofibrillary tangles and amyloid plaques. Inhibiting Tau protein and amyloid-beta (Aβ) production or removing these molecules are considered potential therapeutic strategies for AD. Genipin is an aglycone and is isolated from the extract of Gardenia jasminoides Ellis fruit. In this study, the effect and molecular mechanisms of genipin on the inhibition of Tau aggregation and Aβ generation were investigated. The results showed that genipin bound to Tau and protected against heparin-induced Tau fibril formation. Moreover, genipin suppressed Tau phosphorylation probably by downregulating the expression of CDK5 and GSK-3β, and activated mTOR-dependent autophagy via the SIRT1/LKB1/AMPK signaling pathway in Tau-overexpressing cells. In addition, genipin decreased Aβ production by inhibiting BACE1 expression through the PERK/eIF2α signaling pathway in N2a/SweAPP cells. These data indicated that genipin could effectively lead to a significant reduction of phosphorylated Tau level and Aβ generation in vitro, suggesting that genipin might be developed into an effective therapeutic complement or a potential nutraceutical for preventing AD.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1569
Author(s):  
Keiko Akasaka-Manya ◽  
Hiroshi Manya

The number of people with dementia is increasing rapidly due to the increase in the aging population. Alzheimer’s disease (AD) is a type of neurodegenerative dementia caused by the accumulation of abnormal proteins. Genetic mutations, smoking, and several other factors have been reported as causes of AD, but alterations in glycans have recently been demonstrated to play a role in AD. Amyloid-β (Aβ), a cleaved fragment of APP, is the source of senile plaque, a pathological feature of AD. APP has been reported to undergo N- and O-glycosylation, and several Polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) have been shown to have catalytic activity for the transfer of GalNAc to APP. Since O-glycosylation in the proximity of a cleavage site in many proteins has been reported to be involved in protein processing, O-glycans may affect the cleavage of APP during the Aβ production process. In this report, we describe new findings on the O-glycosylation of APP and Aβ production.


Metallomics ◽  
2016 ◽  
Vol 8 (8) ◽  
pp. 782-789 ◽  
Author(s):  
Zhong-Hao Zhang ◽  
Chen Chen ◽  
Qiu-Yan Wu ◽  
Rui Zheng ◽  
Qiong Liu ◽  
...  

Effects on Aβ production and the probable connection among selenoenzymes, GSK3β and Aβ pathology by selenomethionine treatment in AD mice.


2015 ◽  
Vol 11 (7S_Part_16) ◽  
pp. P773-P773
Author(s):  
Lucia Chavez Gutierrez ◽  
Bart De Strooper ◽  
Sarah Veugelen ◽  
Maria Szaruga

Sign in / Sign up

Export Citation Format

Share Document