Genipin Attenuates Tau Phosphorylation and Aβ Levels in Cellular Models of Alzheimer's Disease

Author(s):  
Meiting Li ◽  
Nan Cai ◽  
Liang Gu ◽  
Lijun Yao ◽  
Decheng Bi ◽  
...  

Abstract Alzheimer’s disease (AD) is a devastating brain disorder characterized by neurofibrillary tangles and amyloid plaques. Inhibiting Tau protein and amyloid-beta (Aβ) production or removing these molecules are considered potential therapeutic strategies for AD. Genipin is an aglycone and is isolated from the extract of Gardenia jasminoides Ellis fruit. In this study, the effect and molecular mechanisms of genipin on the inhibition of Tau aggregation and Aβ generation were investigated. The results showed that genipin bound to Tau and protected against heparin-induced Tau fibril formation. Moreover, genipin suppressed Tau phosphorylation probably by downregulating the expression of CDK5 and GSK-3β, and activated mTOR-dependent autophagy via the SIRT1/LKB1/AMPK signaling pathway in Tau-overexpressing cells. In addition, genipin decreased Aβ production by inhibiting BACE1 expression through the PERK/eIF2α signaling pathway in N2a/SweAPP cells. These data indicated that genipin could effectively lead to a significant reduction of phosphorylated Tau level and Aβ generation in vitro, suggesting that genipin might be developed into an effective therapeutic complement or a potential nutraceutical for preventing AD.

2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 410
Author(s):  
Salar Hafez Ghoran ◽  
Anake Kijjoa

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed—in many cultures—that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.


2020 ◽  
Vol 13 ◽  
pp. 251686572095487
Author(s):  
Adam Schuller ◽  
Luke Montrose

Woodsmoke poses a significant health risk as a growing component of ambient air pollution in the United States. While there is a long history of association between woodsmoke exposure and diseases of the respiratory, circulatory, and cardiovascular systems, recent evidence has linked woodsmoke exposure to cognitive dysfunction, including Alzheimer’s disease dementia. Alzheimer’s disease is a progressive neurodegenerative disorder with largely idiopathic origins and no known cure. Here, we explore the growing body of literature which relates woodsmoke-generated and ambient air pollution particulate matter exposure to Alzheimer’s disease (AD) onset or exacerbation, in the context of an inflammation-centric view of AD. Epigenetic modifications, specifically changes in DNA methylation patterns, are well documented following woodsmoke exposure and have been shown to influence disease-favoring inflammatory cascades, induce oxidative stress, and modulate the immune response in vitro, in vivo, and in humans following exposure to air pollution. Though the current status of the literature does not allow us to draw definitive conclusions linking these events, this review highlights the need for additional work to fill gaps in our understanding of the directionality, causality, and susceptibility throughout the life course.


2019 ◽  
Author(s):  
Sruti Rayaprolu ◽  
Tianwen Gao ◽  
Hailian Xiao ◽  
Supriya Ramesha ◽  
Laura D. Weinstock ◽  
...  

AbstractBackgroundProteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies.MethodsWe coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer’s disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies.ResultsQuantitative multiplexed proteomics by TMT-MS of CD11b+ MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1,791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction.ConclusionsUsing FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.


Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200286
Author(s):  
Niraj Kumar Jha ◽  
Ankur Sharma ◽  
Saurabh Kumar Jha ◽  
Shreesh Ojha ◽  
Dinesh Kumar Chellappan ◽  
...  

Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood–brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng-Chen Bi ◽  
Xin-He Yang ◽  
Xiao-Yu Cheng ◽  
Wen-Bin Deng ◽  
Xiao-Li Guo ◽  
...  

AbstractAlzheimer’s disease (AD) is a neurodegenerative disease that currently cannot be cured by any drug or intervention, due to its complicated pathogenesis. Current animal and cellular models of AD are unable to meet research needs for AD. However, recent three-dimensional (3D) cerebral organoid models derived from human stem cells have provided a new tool to study molecular mechanisms and pharmaceutical developments of AD. In this review, we discuss the advantages and key limitations of the AD cerebral organoid system in comparison to the commonly used AD models, and propose possible solutions, in order to improve their application in AD research. Ethical concerns associated with human cerebral organoids are also discussed. We also summarize future directions of studies that will improve the cerebral organoid system to better model the pathological events observed in AD brains.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2897
Author(s):  
Anatoly S. Urban ◽  
Konstantin V. Pavlov ◽  
Anna V. Kamynina ◽  
Ivan S. Okhrimenko ◽  
Alexander S. Arseniev ◽  
...  

Alzheimer’s disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-β peptides (Aβ) triggers the disease. Aβ accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques. Aβ isoforms of different lengths are found in healthy human brains regardless of age and appear to play a role in signaling pathways in the brain and to have neuroprotective properties at low concentrations. In recent years, different substances have been developed targeting Aβ production, aggregation, interaction with other molecules, and clearance, including peptide-based drugs. Aβ is a product of sequential cleavage of the membrane glycoprotein APP (amyloid precursor protein) by β- and γ-secretases. A number of familial mutations causing an early onset of the disease have been identified in the APP, especially in its transmembrane domain. The mutations are reported to influence the production, oligomerization, and conformational behavior of Aβ peptides. This review highlights the results of structural studies of the main proteins involved in Alzheimer’s disease pathogenesis and the molecular mechanisms by which perspective therapeutic substances can affect Aβ production and nucleation.


Sign in / Sign up

Export Citation Format

Share Document