scholarly journals Formaldehyde Oxidation over Co@N-Doped Carbon at Room Temperature: Tunable Co Size and Intensified Surface Electron Density

Author(s):  
Dandan Zhu ◽  
Yu Huang ◽  
Rong Li ◽  
Tingting Huang ◽  
Jun-ji Cao ◽  
...  
Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


2021 ◽  
Author(s):  
Lifang Qi ◽  
Yao Le ◽  
Chao Wang ◽  
Rui Lei ◽  
Tian Wu

Self-assembling ultrathin active δ-MnO2 nanosheets and Mn3O4 octahedrons into hierarchical texture enhances room-temperature formaldehyde oxidation at a low-level of Pt.


1969 ◽  
Vol 47 (13) ◽  
pp. 1331-1336 ◽  
Author(s):  
R. A. Moore ◽  
S. H. Vosko

The dependence of the Fermi surface electron wave functions in Na and K on (i) an L-dependent effective local cellular potential constructed to simulate Hartree-Fock theory and (ii) the inclusion of the Hartree field due to the conduction electrons in the cellular potential is investigated. All calculations are performed using the Wigner–Seitz spherical cellular approximation and the Schrödinger equation is solved by the Kohn variational method. It is found that to ensure a value of the Fermi surface electron density at the nucleus accurate to ~5%, it is necessary to use the L-dependent potential along with the Hartree field due to a realistic conduction electron density.


IUCrJ ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-126 ◽  
Author(s):  
E. I. Howard ◽  
B. Guillot ◽  
M. P. Blakeley ◽  
M. Haertlein ◽  
M. Moulin ◽  
...  

Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.


1992 ◽  
Vol 281 ◽  
Author(s):  
X. Jin ◽  
M. Zhang ◽  
G. S. Dong ◽  
Z. S. Li ◽  
Xun Wang ◽  
...  

ABSTRACTFormation and electronic structure of the Mn/GaAs(100) interface grown at room temperature are studied by photoemission. The growth at early stage is identified to be in two-dimensional mode. The chemical reaction and the interface diffusion happened between Mn and GaAs are explored in some details. A ferromagnetic phase of Mn overlayer at early stage is deduced from the change of electron density of states near the Fermi edge.


Sign in / Sign up

Export Citation Format

Share Document