A GATA3 Targeting Nucleic Acid Nanocapsule for In Vivo Gene Regulation in Asthma

ACS Nano ◽  
2021 ◽  
Author(s):  
Tyler D. Gavitt ◽  
Alyssa K. Hartmann ◽  
Shraddha S. Sawant ◽  
Arlind B. Mara ◽  
Steven M. Szczepanek ◽  
...  
Keyword(s):  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Passamonti ◽  
Marco Calderone ◽  
Manuel Delpero ◽  
Federico Plazzi

2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1011
Author(s):  
Karishma Dhuri ◽  
Rutesh N. Vyas ◽  
Leslie Blumenfeld ◽  
Rajkumar Verma ◽  
Raman Bahal

Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.


1980 ◽  
Vol 29 (9) ◽  
pp. 1304-1306 ◽  
Author(s):  
Nakagawa Yoshio ◽  
Hiraga Kogo ◽  
Suga Tetsuya

Gene Therapy ◽  
2007 ◽  
Vol 14 (15) ◽  
pp. 1175-1180 ◽  
Author(s):  
J Probst ◽  
B Weide ◽  
B Scheel ◽  
B J Pichler ◽  
I Hoerr ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi104-vi105
Author(s):  
Akanksha Mahajan ◽  
Lisa Hurley ◽  
Serena Tommasini-Ghelfi ◽  
Corey Dussold ◽  
Alexander Stegh ◽  
...  

Abstract The Stimulator of Interferon Genes (STING) pathway represents a major innate immune sensing mechanism for tumor-derived DNA. Modified cyclic dinucleotides (CDNs) that mimic the endogenous STING ligand cGAMP are currently being explored in patients with solid tumors that are amenable to intratumoral delivery. Inadequate bioavailability and insufficient lipophilicity are limiting factors for clinical CDN development, in particular when consideration is given to systemic administration approaches. We have shown that the formulation of oligonucleotides into Spherical Nucleic Acid (SNA) nanostructures, i.e.,the presentation of oligonucleotides at high density on the surface of nanoparticle cores, lead to biochemical and biological properties that are radically different from those of linear oligonucleotides. First-generation brain-penetrant siRNA-based SNAs (NCT03020017, recurrent GBM) have recently completed early clinical trials. Here, we report the development of a STING-agonistic immunotherapy by targeting cGAS, the sensor of cytosolic dsDNA upstream of STING, with SNAs presenting dsDNA at high surface density. The strategy of using SNAs exploits the ability of cGAS to raise STING responses by delivering dsDNA and inducing the catalytic production of endogenous CDNs. SNA nanostructures carrying a 45bp IFN-simulating dsDNA oligonucleotide, the most commonly used and widely characterized cGAS activator, potently activated the cGAS-STING pathway in vitro and in vivo. In a poorly immunogenic and highly aggressive syngeneic mouse glioma model, in which tumours were well-established, only one dose of intranasal treatment with STING-SNAs decelerated tumour growth, improved survival and importantly, was well-tolerated. Our use of SNAs addresses the challenges of nucleic acid delivery to intracranial tumor sites via intranasal route, exploits the binding of dsDNA molecules on the SNA surface to enhance the formation of a dimeric cGAS:DNA complex and establishes cGAS-agonistic SNAs as a novel class of immune-stimulatory modalities for triggering innate immune responses against tumor.


2021 ◽  
Author(s):  
Yinghui Feng ◽  
Qi Liu ◽  
Miao Chen ◽  
Xinyi Zhao ◽  
Lumin Wang ◽  
...  

Herein we report a framework nucleic acid programmed strategy to develop nanocarriers to precisely and independently package multiple homo- and heterogeneous cargos in vitro and in vivo, thereby enabling multiplexed...


2015 ◽  
Vol 14 (3) ◽  
pp. 10087-10095 ◽  
Author(s):  
Y.B. Deng ◽  
H.J. Qin ◽  
Y.H. Luo ◽  
Z.R. Liang ◽  
J.J. Zou

2003 ◽  
Vol 77 (2) ◽  
pp. 1268-1280 ◽  
Author(s):  
Jeremy O. Jones ◽  
Ann M. Arvin

ABSTRACT During primary infection, varicella-zoster virus (VZV) is spread via lymphocytes to skin, where it induces a rash and establishes latency in sensory ganglia. A live, attenuated varicella vaccine (vOka) was generated by using the VZV Oka strain (pOka), but the molecular basis for vOka attenuation remains unknown. Little is known concerning the effects of wild-type or attenuated VZV on cellular gene regulation in the host cells that are critical for pathogenesis. In this study, transcriptional profiles of primary human T cells and fibroblasts infected with VZV in cell culture were determined by using 40,000-spot human cDNA microarrays. Cellular gene transcription in human skin xenografts in SCID mice that were infected with VZV in vivo was also evaluated. The profiles of cellular gene transcripts that were induced or inhibited in infected human foreskin fibroblasts (HFFs), T cells, and skin in response to pOka and vOka infection were similar. However, significant alterations in cellular gene regulation were observed among the three differentiated human cell types that were examined, suggesting specific differences in the biological consequences of VZV infection related to the target cell. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time reverse transcription-PCR analysis of VZV-infected cells. Interestingly, the transcription of caspase 8 was found to be decreased in infected T cells but not in HFFs or skin, which may signify a tissue-specific antiapoptosis mechanism. The use of microarrays to demonstrate differences in effects on host cell genes in primary, biologically relevant cell types provides background information for experiments to link these various response phenotypes with mechanisms of VZV pathogenesis that are important for the natural course of human infection.


2012 ◽  
Vol 7 (6) ◽  
pp. 389-393 ◽  
Author(s):  
Hyukjin Lee ◽  
Abigail K. R. Lytton-Jean ◽  
Yi Chen ◽  
Kevin T. Love ◽  
Angela I. Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document