scholarly journals Thermodynamic Characteristics of the Hydrogen Sulfide Sorption Process by Ferromanganese Materials

ACS Omega ◽  
2022 ◽  
Author(s):  
Olga V. Cheremisina ◽  
Maria A. Ponomareva ◽  
Victor A. Bolotov ◽  
Artyom S. Osipov ◽  
Alexandr V. Sitko
2016 ◽  
Vol 32 (5) ◽  
pp. 2577-2584
Author(s):  
A. Tleuov ◽  
S. Arystanova ◽  
S. Tleuova ◽  
Zh. Altybayev ◽  
A. Suigenbayeva

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Elizaveta Cheremisina ◽  
Olga Cheremisina ◽  
Maria Ponomareva ◽  
Viktor Bolotov ◽  
Alexander Fedorov

The kinetics of hydrogen sulfide sorption by the surface of a ferromanganese material containing in its composition a mixture of iron (II) and (III) oxides FeO × Fe2O3, takanelite (Mn, Ca) Mn4O9 × 3H2O and quartz SiO2, and which is samples of unrefined ferromanganese ore, was studied in this work. Sorption rate constant and activation energy constant values were calculated. The catalytic effect of iron (III) oxide was established, the presence of which in natural material contributes to a decrease in the H2S sorption activation energy. Based on the results of X-ray phase and chromatographic analysis methods, a chemical (redox) reaction of the conversion of hydrogen sulfide into elemental sulfur and H2O was revealed. The overall process rate is expressed in terms of the physical sorption stage and chemical transformation of the components; the influence of the rate of the third stage—reaction products desorption—on the overall rate of the process is taken into account. The limiting stage of the process is determined—a chemical reaction. The relation between the heat and the activation energy of the chemical transformation is used according to the Bronsted—Polanyi rule for catalytic processes. It was found that with an increase in the chemisorption heat, the activation energy of the chemisorption stage decreases and, as a consequence, its rate increases. The sorption process parameters were calculated—the Fe2O3 coverage degree with the initial substances and reaction products providing the maximum sorption rate, which can be a criterion for evaluating the catalytically active sites of the catalyst surface for carrying out catalytic reactions.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.


Author(s):  
I. Khidirov ◽  
V. V. Getmanskiy ◽  
A. S. Parpiev ◽  
Sh. A. Makhmudov

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.


Author(s):  
Tetyana V Shimanskaya ◽  
Yulia V. Goshovska ◽  
Olena M. Semenykhina ◽  
Vadim F. Sagach

Sign in / Sign up

Export Citation Format

Share Document