Engineering a Central Carbon Metabolism Pathway to Increase the Intracellular Acetyl-CoA Pool in Synechocystis sp. PCC 6803 Grown under Photomixotrophic Conditions

Author(s):  
Xinyu Song ◽  
Jinjin Diao ◽  
Jiaqi Yao ◽  
Jinyu Cui ◽  
Tao Sun ◽  
...  
mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Katharina Kremer ◽  
Muriel C. F. van Teeseling ◽  
Lennart Schada von Borzyskowski ◽  
Iria Bernhardsgrütter ◽  
Rob J. M. van Spanning ◽  
...  

ABSTRACT During growth, microorganisms have to balance metabolic flux between energy and biosynthesis. One of the key intermediates in central carbon metabolism is acetyl coenzyme A (acetyl-CoA), which can be either oxidized in the citric acid cycle or assimilated into biomass through dedicated pathways. Two acetyl-CoA assimilation strategies in bacteria have been described so far, the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). Here, we show that Paracoccus denitrificans uses both strategies for acetyl-CoA assimilation during different growth stages, revealing an unexpected metabolic complexity in the organism’s central carbon metabolism. The EMCP is constitutively expressed on various substrates and leads to high biomass yields on substrates requiring acetyl-CoA assimilation, such as acetate, while the GC is specifically induced on these substrates, enabling high growth rates. Even though each acetyl-CoA assimilation strategy alone confers a distinct growth advantage, P. denitrificans recruits both to adapt to changing environmental conditions, such as a switch from succinate to acetate. Time-resolved single-cell experiments show that during this switch, expression of the EMCP and GC is highly coordinated, indicating fine-tuned genetic programming. The dynamic metabolic rewiring of acetyl-CoA assimilation is an evolutionary innovation by P. denitrificans that allows this organism to respond in a highly flexible manner to changes in the nature and availability of the carbon source to meet the physiological needs of the cell, representing a new phenomenon in central carbon metabolism. IMPORTANCE Central carbon metabolism provides organisms with energy and cellular building blocks during growth and is considered the invariable “operating system” of the cell. Here, we describe a new phenomenon in bacterial central carbon metabolism. In contrast to many other bacteria that employ only one pathway for the conversion of the central metabolite acetyl-CoA, Paracoccus denitrificans possesses two different acetyl-CoA assimilation pathways. These two pathways are dynamically recruited during different stages of growth, which allows P. denitrificans to achieve both high biomass yield and high growth rates under changing environmental conditions. Overall, this dynamic rewiring of central carbon metabolism in P. denitrificans represents a new strategy compared to those of other organisms employing only one acetyl-CoA assimilation pathway.


2020 ◽  
Vol 401 (12) ◽  
pp. 1429-1441
Author(s):  
Lennart Schada von Borzyskowski ◽  
Iria Bernhardsgrütter ◽  
Tobias J. Erb

AbstractFor a long time, our understanding of metabolism has been dominated by the idea of biochemical unity, i.e., that the central reaction sequences in metabolism are universally conserved between all forms of life. However, biochemical research in the last decades has revealed a surprising diversity in the central carbon metabolism of different microorganisms. Here, we will embrace this biochemical diversity and explain how genetic redundancy and functional degeneracy cause the diversity observed in central metabolic pathways, such as glycolysis, autotrophic CO2 fixation, and acetyl-CoA assimilation. We conclude that this diversity is not the exception, but rather the standard in microbiology.


2007 ◽  
Vol 189 (11) ◽  
pp. 4108-4119 ◽  
Author(s):  
Ulrike Jahn ◽  
Harald Huber ◽  
Wolfgang Eisenreich ◽  
Michael Hügler ◽  
Georg Fuchs

ABSTRACT Ignicoccus hospitalis is an autotrophic hyperthermophilic archaeon that serves as a host for another parasitic/symbiotic archaeon, Nanoarchaeum equitans. In this study, the biosynthetic pathways of I. hospitalis were investigated by in vitro enzymatic analyses, in vivo 13C-labeling experiments, and genomic analyses. Our results suggest the operation of a so far unknown pathway of autotrophic CO2 fixation that starts from acetyl-coenzyme A (CoA). The cyclic regeneration of acetyl-CoA, the primary CO2 acceptor molecule, has not been clarified yet. In essence, acetyl-CoA is converted into pyruvate via reductive carboxylation by pyruvate-ferredoxin oxidoreductase. Pyruvate-water dikinase converts pyruvate into phosphoenolpyruvate (PEP), which is carboxylated to oxaloacetate by PEP carboxylase. An incomplete citric acid cycle is operating: citrate is synthesized from oxaloacetate and acetyl-CoA by a (re)-specific citrate synthase, whereas a 2-oxoglutarate-oxidizing enzyme is lacking. Further investigations revealed that several special biosynthetic pathways that have recently been described for various archaea are operating. Isoleucine is synthesized via the uncommon citramalate pathway and lysine via the α-aminoadipate pathway. Gluconeogenesis is achieved via a reverse Embden-Meyerhof pathway using a novel type of fructose 1,6-bisphosphate aldolase. Pentosephosphates are formed from hexosephosphates via the suggested ribulose-monophosphate pathway, whereby formaldehyde is released from C-1 of hexose. The organism may not contain any sugar-metabolizing pathway. This comprehensive analysis of the central carbon metabolism of I. hospitalis revealed further evidence for the unexpected and unexplored diversity of metabolic pathways within the (hyperthermophilic) archaea.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2543-2543
Author(s):  
Martha M. Zarou ◽  
Kevin Rattigan ◽  
Zuzana Brabcova ◽  
Amy Dawson ◽  
David Sumpton ◽  
...  

Abstract Metabolic rewiring is an important hallmark of cancer. The folate metabolism pathway, also known as one-carbon (1C) metabolism, allows for transfer of 1C units through folate intermediates for biosynthetic processes, including precursors for DNA synthesis. Recent studies have shown that enzymes involved in the mitochondrial arm of 1C metabolism are overexpressed in a subset of aggressive cancers and that their expression affects responses to anti-metabolite drug treatments. However, the role of 1C metabolism in therapy resistant leukemic stem cells (LSCs) is currently unknown. Therefore, we aimed to investigate the activity and the impact of genetic and pharmacological inhibition of folate enzymes in primitive chronic myeloid leukaemia (CML) cells. We initially performed transcriptomic analysis of CD34+38- cells, from individuals with chronic phase CML (E-MTAB-2581). This revealed a significant upregulation of folate metabolism genes in CML LSCs, including serine hydroxymethyltransferase (SHMT2; p≤0.05), a key mitochondrial enzyme. To assess the activity of 1C metabolism in primitive cells we performed gas chromatography-mass spectrometry-mediated secretomic analysis using patient-derived, c-KIT enriched CML cells, which revealed a significant increase in the exchange rate of formate (folate intermediate necessary for purine synthesis) in CML cells, when compared to the secretome of normal counterparts (p<0.05). This reinforced the idea that 1C metabolism may be a metabolic dependency in CML. Following CRISPR-Cas9-mediated SHMT2 knockout (KO) in CML cell line, we observed a significant decrease in growth rate, together with a decrease in glycolytic capacity and oxygen consumption rate (p<0.01), suggesting impairment in proliferation and central carbon metabolism. Further metabolic characterisation of CML SHMT2 KO cells using liquid chromatography-mass spectrometry demonstrated a significant increase in AICAR, a purine biosynthesis intermediate and an AMP activated kinase (AMPK) activator. This prompted us to investigate the effect of 1C metabolism inhibition on AMPK. We found that AMPK phosphorylation on the conserved Thr 172 (a site that is phosphorylated under energy stress) was increased in SHMT2 KO cells, with similar effect seen following pharmacological inhibition of both SHMT2 and its cytosolic counterpart SHMT1 using SHIN1,which also promoted AMPK-dependent phosphorylation of the autophagy-inducing kinase ULK1 and downstream ULK1 target ATG13. Moreover, analysis of mitochondrial fraction revealed accumulation of mitochondrial fission related protein DRP1 and the mitophagy receptor NIX on mitochondria, hinting towards cellular interplay between 1C metabolism and mitochondrial homeostasis. Phenotypically, both pharmacological and genetic inhibition of SHMT1/2 induced the expression of erythropoiesis markers CD71 and Glycophorin A, which was reversed following formate supplementation. CRISPR-Cas9-mediated double AMPKα1/α2 KO revealed that the increased expression of these erythropoiesis markers following SHMT1/2 inhibition was independent of AMPK activity. Conversely, while NIX KO had no effect, pharmacological inhibition of ULK1 kinase activity, or genetic inhibition of ULK1 and ATG7 (protein important for autophagosome formation), prevented increased expression of CD71/Glycophorin A following SHMT1/2 inhibition. We next investigated the effect of 1C metabolism inhibition on differentiation and survival of primary CML cells. Of clinical relevance, pharmacological inhibition of SHMT1/2 promoted erythroid maturation of CD34+ CML cells (measured by expression of CD71, CD44, CD36 and Glycophorin A) when challenged with erythropoietin, which sensitises primitive cells to erythroid lineage commitment. Lastly, pharmacological inhibition of 1C metabolism decreased the colony formation capacity of CD34+ CML by 50%, with minimum effect on normal CD34+ cells. Moreover, combination treatment of SHIN1 with imatinib, a frontline treatment for CML patients, further increased the sensitivity of primary CML cells to imatinib by 40%. Overall, our novel findings indicate that disruption of the folate metabolism pathway inhibits central carbon metabolism in CML cells, promotes autophagy dependent, but AMPK independent maturation phenotype and has detrimental effect on the survival of primitive CML cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document