scholarly journals Biochemical unity revisited: microbial central carbon metabolism holds new discoveries, multi-tasking pathways, and redundancies with a reason

2020 ◽  
Vol 401 (12) ◽  
pp. 1429-1441
Author(s):  
Lennart Schada von Borzyskowski ◽  
Iria Bernhardsgrütter ◽  
Tobias J. Erb

AbstractFor a long time, our understanding of metabolism has been dominated by the idea of biochemical unity, i.e., that the central reaction sequences in metabolism are universally conserved between all forms of life. However, biochemical research in the last decades has revealed a surprising diversity in the central carbon metabolism of different microorganisms. Here, we will embrace this biochemical diversity and explain how genetic redundancy and functional degeneracy cause the diversity observed in central metabolic pathways, such as glycolysis, autotrophic CO2 fixation, and acetyl-CoA assimilation. We conclude that this diversity is not the exception, but rather the standard in microbiology.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Katharina Kremer ◽  
Muriel C. F. van Teeseling ◽  
Lennart Schada von Borzyskowski ◽  
Iria Bernhardsgrütter ◽  
Rob J. M. van Spanning ◽  
...  

ABSTRACT During growth, microorganisms have to balance metabolic flux between energy and biosynthesis. One of the key intermediates in central carbon metabolism is acetyl coenzyme A (acetyl-CoA), which can be either oxidized in the citric acid cycle or assimilated into biomass through dedicated pathways. Two acetyl-CoA assimilation strategies in bacteria have been described so far, the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). Here, we show that Paracoccus denitrificans uses both strategies for acetyl-CoA assimilation during different growth stages, revealing an unexpected metabolic complexity in the organism’s central carbon metabolism. The EMCP is constitutively expressed on various substrates and leads to high biomass yields on substrates requiring acetyl-CoA assimilation, such as acetate, while the GC is specifically induced on these substrates, enabling high growth rates. Even though each acetyl-CoA assimilation strategy alone confers a distinct growth advantage, P. denitrificans recruits both to adapt to changing environmental conditions, such as a switch from succinate to acetate. Time-resolved single-cell experiments show that during this switch, expression of the EMCP and GC is highly coordinated, indicating fine-tuned genetic programming. The dynamic metabolic rewiring of acetyl-CoA assimilation is an evolutionary innovation by P. denitrificans that allows this organism to respond in a highly flexible manner to changes in the nature and availability of the carbon source to meet the physiological needs of the cell, representing a new phenomenon in central carbon metabolism. IMPORTANCE Central carbon metabolism provides organisms with energy and cellular building blocks during growth and is considered the invariable “operating system” of the cell. Here, we describe a new phenomenon in bacterial central carbon metabolism. In contrast to many other bacteria that employ only one pathway for the conversion of the central metabolite acetyl-CoA, Paracoccus denitrificans possesses two different acetyl-CoA assimilation pathways. These two pathways are dynamically recruited during different stages of growth, which allows P. denitrificans to achieve both high biomass yield and high growth rates under changing environmental conditions. Overall, this dynamic rewiring of central carbon metabolism in P. denitrificans represents a new strategy compared to those of other organisms employing only one acetyl-CoA assimilation pathway.


2021 ◽  
Author(s):  
Eline Postma ◽  
luuk Couwenberg ◽  
Roderick N. Van Roosmalen ◽  
Jordi Geelhoed ◽  
Philip de Groot ◽  
...  

Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterised by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of minor paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, pentose phosphate pathway, tricarboxylic acid cycle and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 from the 111 genes yielded a minimal CCM strain, which despite the elimination of 32 % of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes of the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodelling of yeast CCM.


2007 ◽  
Vol 189 (11) ◽  
pp. 4108-4119 ◽  
Author(s):  
Ulrike Jahn ◽  
Harald Huber ◽  
Wolfgang Eisenreich ◽  
Michael Hügler ◽  
Georg Fuchs

ABSTRACT Ignicoccus hospitalis is an autotrophic hyperthermophilic archaeon that serves as a host for another parasitic/symbiotic archaeon, Nanoarchaeum equitans. In this study, the biosynthetic pathways of I. hospitalis were investigated by in vitro enzymatic analyses, in vivo 13C-labeling experiments, and genomic analyses. Our results suggest the operation of a so far unknown pathway of autotrophic CO2 fixation that starts from acetyl-coenzyme A (CoA). The cyclic regeneration of acetyl-CoA, the primary CO2 acceptor molecule, has not been clarified yet. In essence, acetyl-CoA is converted into pyruvate via reductive carboxylation by pyruvate-ferredoxin oxidoreductase. Pyruvate-water dikinase converts pyruvate into phosphoenolpyruvate (PEP), which is carboxylated to oxaloacetate by PEP carboxylase. An incomplete citric acid cycle is operating: citrate is synthesized from oxaloacetate and acetyl-CoA by a (re)-specific citrate synthase, whereas a 2-oxoglutarate-oxidizing enzyme is lacking. Further investigations revealed that several special biosynthetic pathways that have recently been described for various archaea are operating. Isoleucine is synthesized via the uncommon citramalate pathway and lysine via the α-aminoadipate pathway. Gluconeogenesis is achieved via a reverse Embden-Meyerhof pathway using a novel type of fructose 1,6-bisphosphate aldolase. Pentosephosphates are formed from hexosephosphates via the suggested ribulose-monophosphate pathway, whereby formaldehyde is released from C-1 of hexose. The organism may not contain any sugar-metabolizing pathway. This comprehensive analysis of the central carbon metabolism of I. hospitalis revealed further evidence for the unexpected and unexplored diversity of metabolic pathways within the (hyperthermophilic) archaea.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255925
Author(s):  
Janine Hofmann ◽  
Mebratu A. Bitew ◽  
Miku Kuba ◽  
David P. De Souza ◽  
Hayley J. Newton ◽  
...  

The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.


Author(s):  
Shuba Krishnan ◽  
Hampus Nordqvist ◽  
Anoop T. Ambikan ◽  
Soham Gupta ◽  
Maike Sperk ◽  
...  

AbstractViruses hijack host metabolic pathways for their replicative advantage. Several observational trans-omics analyses associated carbon and amino acid metabolism in coronavirus disease 2019 (COVID-19) severity in patients but lacked mechanistic insights. In this study, using patient- derived multi-omics data and in vitro infection assays, we aimed to understand i) role of key metabolic pathways in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) reproduction and ii) its association with disease severity. Our data suggests that monocytes are key to the altered immune response during COVID-19. COVID-19 infection was associated with increased plasma glutamate levels, while glucose and mannose levels were determinants of the disease severity. Monocytes showed altered expression pattern of carbohydrate and amino acid transporters, GLUT1 and xCT respectively in severe COVID-19. Furthermore, lung epithelial cells (Calu-3) showed a strong acute metabolic adaptation following infection in vitro by modulating central carbon metabolism. We found that glycolysis and glutaminolysis are essential for virus replication and blocking these metabolic pathways caused significant reduction in virus production. Taken together, our study highlights that the virus utilizes and re-wires pathways governing central carbon metabolism leading to metabolic toxicity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.


Sign in / Sign up

Export Citation Format

Share Document