Two Unique Phosphorylation-Driven Signaling Pathways Crosstalk in Staphylococcus aureus to Modulate the Cell-Wall Charge: Stk1/Stp1 Meets GraSR

Biochemistry ◽  
2013 ◽  
Vol 52 (45) ◽  
pp. 7975-7986 ◽  
Author(s):  
Michael Fridman ◽  
G. Declan Williams ◽  
Uzma Muzamal ◽  
Howard Hunter ◽  
K.W. Michael Siu ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


Author(s):  
Francesca Berni ◽  
Jacopo Enotarpi ◽  
Thijs Voskuilen ◽  
Sizhe Li ◽  
Gijs A. van der Marel ◽  
...  

2014 ◽  
Vol 80 (13) ◽  
pp. 3868-3878 ◽  
Author(s):  
Ana Yepes ◽  
Gudrun Koch ◽  
Andrea Waldvogel ◽  
Juan-Carlos Garcia-Betancur ◽  
Daniel Lopez

ABSTRACTProtein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial modelsEscherichia coliandBacillus subtilishave been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacteriumStaphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of theS. aureuschromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression ofmreBinS. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that inS. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the useS. aureusas a model system in exploring diverse aspects of cellular microbiology.


1968 ◽  
Vol 14 (7) ◽  
pp. 811-812
Author(s):  
Joseph T. Parisi ◽  
William J. Suling

Glycine-resistant variants of Staphylococcus aureus were obtained by successive cultivation of parent strains in increasing concentrations of glycine, and the minimal inhibitory concentrations of glycine of the parents and variants were determined. Although it has been reported that growth in glycine or certain antibiotics causes the accumulation of nucleotides involved in cell wall synthesis, a lack of cross resistance of the variants to some of these antibiotics was observed.


2013 ◽  
Vol 57 (5) ◽  
pp. 2376-2379 ◽  
Author(s):  
B. J. Werth ◽  
C. Vidaillac ◽  
K. P. Murray ◽  
K. L. Newton ◽  
G. Sakoulas ◽  
...  

ABSTRACTWe demonstrated a significant inverse correlation between vancomycin and beta-lactam susceptibilities in vancomycin-intermediateStaphylococcus aureus(VISA) and heterogeneous VISA (hVISA) isolates. Using time-kill assays, vancomycin plus oxacillin or ceftaroline was synergistic against 3 of 5 VISA and 1 of 5 hVISA isolates or 5 of 5 VISA and 4 of 5 hVISA isolates, respectively. Beta-lactam exposure reduced overall vancomycin-Bodipy (dipyrrometheneboron difluoride [4,4-difluoro-4-bora-3a,4a-diaza-s-indacene] fluorescent dye) binding but may have improved vancomycin-cell wall interactions to improve vancomycin activity. Further research is warranted to elucidate the mechanism behind vancomycin and beta-lactam synergy.


Sign in / Sign up

Export Citation Format

Share Document