scholarly journals Reconstruction ofmreBExpression in Staphylococcus aureus via a Collection of New Integrative Plasmids

2014 ◽  
Vol 80 (13) ◽  
pp. 3868-3878 ◽  
Author(s):  
Ana Yepes ◽  
Gudrun Koch ◽  
Andrea Waldvogel ◽  
Juan-Carlos Garcia-Betancur ◽  
Daniel Lopez

ABSTRACTProtein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial modelsEscherichia coliandBacillus subtilishave been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacteriumStaphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of theS. aureuschromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression ofmreBinS. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that inS. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the useS. aureusas a model system in exploring diverse aspects of cellular microbiology.

2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


2013 ◽  
Vol 57 (5) ◽  
pp. 2376-2379 ◽  
Author(s):  
B. J. Werth ◽  
C. Vidaillac ◽  
K. P. Murray ◽  
K. L. Newton ◽  
G. Sakoulas ◽  
...  

ABSTRACTWe demonstrated a significant inverse correlation between vancomycin and beta-lactam susceptibilities in vancomycin-intermediateStaphylococcus aureus(VISA) and heterogeneous VISA (hVISA) isolates. Using time-kill assays, vancomycin plus oxacillin or ceftaroline was synergistic against 3 of 5 VISA and 1 of 5 hVISA isolates or 5 of 5 VISA and 4 of 5 hVISA isolates, respectively. Beta-lactam exposure reduced overall vancomycin-Bodipy (dipyrrometheneboron difluoride [4,4-difluoro-4-bora-3a,4a-diaza-s-indacene] fluorescent dye) binding but may have improved vancomycin-cell wall interactions to improve vancomycin activity. Further research is warranted to elucidate the mechanism behind vancomycin and beta-lactam synergy.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Felipe H. Santiago-Tirado

ABSTRACT Felipe Santiago-Tirado studies the cell biology of cryptococcal infections. In this mSphere of Influence article, he reflects on how the papers “Systematic Genetic Analysis of Virulence in the Human Fungal Pathogen Cryptococcus neoformans” (https://doi.org/10.1016/j.cell.2008.07.046) and “Unraveling the Biology of a Fungal Meningitis Pathogen Using Chemical Genetics” (https://doi.org/10.1016/j.cell.2014.10.044) by the Noble and Madhani groups influenced his thinking by showcasing the various modern applications of yeast genetics in an organism where genetic manipulation was difficult.


2015 ◽  
Vol 59 (7) ◽  
pp. 4215-4225 ◽  
Author(s):  
Miki Matsuo ◽  
Tomomi Hishinuma ◽  
Yuki Katayama ◽  
Keiichi Hiramatsu

ABSTRACTVarious mutations in therpoBgene, which encodes the RNA polymerase β subunit, are associated with increased vancomycin (VAN) resistance in vancomycin-intermediateStaphylococcus aureus(VISA) and heterogeneously VISA (hVISA) strains. We reported thatrpoBmutations are also linked to the expression of the recently found “slow VISA” (sVISA) phenotype (M. Saito, Y. Katayama, T. Hishinuma, A. Iwamoto, Y. Aiba, K Kuwahara-Arai, L. Cui, M. Matsuo, N. Aritaka, and K. Hiramatsu, Antimicrob Agents Chemother 58:5024–5035, 2014,http://dx.doi.org/10.1128/AAC.02470-13). Because RpoC and RpoB are components of RNA polymerase, we examined the effect of therpoC(P440L) mutation on the expression of the sVISA phenotype in the Mu3fdh2*V6-5 strain (V6-5), which was derived from a previously reported hVISA strain with the VISA phenotype. V6-5 had an extremely prolonged doubling time (DT) (72 min) and high vancomycin MIC (16 mg/liter). However, the phenotype of V6-5 was unstable, and the strain frequently reverted to hVISA with concomitant loss of low growth rate, cell wall thickness, and reduced autolysis. Whole-genome sequencing of phenotypic revertant strain V6-5-L1 and comparison with V6-5 revealed a second mutation, F562L, inrpoC. Introduction of the wild-type (WT)rpoCgene using a multicopy plasmid resolved the sVISA phenotype of V6-5, indicating that therpoC(P440L) mutant expressed the sVISA phenotype in hVISA. To investigate the mechanisms of resistance in the sVISA strain, we independently isolated an additional 10 revertants to hVISA and VISA. In subsequent whole-genome analysis, we identified compensatory mutations in the genes of three distinct functional categories: therpoCgene itself as regulatory mutations, peptidoglycan biosynthesis genes, andrelQ, which is involved in the stringent response. It appears that therpoC(P440L) mutation causes the sVISA phenotype by augmenting cell wall peptidoglycan synthesis and through the control of the stringent response.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Volker Winstel ◽  
Patricia Sanchez-Carballo ◽  
Otto Holst ◽  
Guoqing Xia ◽  
Andreas Peschel

ABSTRACT The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. IMPORTANCE The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Payal P. Balraadjsing ◽  
Lisbeth D. Lund ◽  
Yuri Souwer ◽  
Sebastian A. J. Zaat ◽  
Hanne Frøkiær ◽  
...  

ABSTRACT Staphylococcus aureus has evolved different strategies to evade the immune response, which play an important role in its pathogenesis. The bacteria express and shed various cell wall components and toxins during different stages of growth that may affect the protective T cell responses to extracellular and intracellular S. aureus. However, if and how the dendritic cell (DC)-mediated T cell response against S. aureus changes during growth of the bacterium remain elusive. In this study, we show that exponential-phase (EP) S. aureus bacteria were endocytosed very efficiently by human DCs, and these DCs strongly promoted production of the T cell polarizing factor interleukin-12 (IL-12). In contrast, stationary-phase (SP) S. aureus bacteria were endocytosed less efficiently by DCs, and these DCs produced small amounts of IL-12. The high level of IL-12 production induced by EP S. aureus led to the development of a T helper 1 (Th1) cell response, which was inhibited after neutralization of IL-12. Furthermore, preincubation with the staphylococcal cell wall component peptidoglycan (PGN), characteristically shed during the exponential growth phase, modulated the DC response to EP S. aureus. PGN preincubation appeared to inhibit IL-12p35 expression, leading to downregulation of IL-12 and an increase of IL-23 production by DCs, enhancing Th17 cell development. Taken together, our data indicate that exponential-phase S. aureus bacteria induce a stronger IL-12-dependent Th1 cell response than stationary-phase S. aureus and that this Th1 cell response shifted toward a Th17 cell response in the presence of PGN.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Bibek G C ◽  
Gyan S. Sahukhal ◽  
Mohamed O. Elasri

ABSTRACT Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as β-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD. Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the β-lactams.


2017 ◽  
Vol 199 (15) ◽  
Author(s):  
James D. Chang ◽  
Erin E. Foster ◽  
Aanchal N. Thadani ◽  
Alejandro J. Ramirez ◽  
Sung Joon Kim

ABSTRACT Oritavancin is a lipoglycopeptide antibiotic that exhibits potent activities against vancomycin-resistant Gram-positive pathogens. Oritavancin differs from vancomycin by a hydrophobic side chain attached to the drug disaccharide, which forms a secondary binding site to enable oritavancin binding to the cross-linked peptidoglycan in the cell wall. The mode of action of secondary binding site was investigated by measuring the changes in the peptidoglycan composition of Staphylococcus aureus grown in the presence of desleucyl-oritavancin at subinhibitory concentration using liquid chromatography-mass spectrometry (LC-MS). Desleucyl-oritavancin is an Edman degradation product of oritavancin that exhibits potent antibacterial activities despite the damaged d-Ala–d-Ala binding site due to its functional secondary binding site. Accurate quantitative peptidoglycan composition analysis based on 83 muropeptide ions determined that cell walls of S. aureus grown in the presence of desleucyl-oritavancin showed a reduction of peptidoglycan cross-linking, increased muropeptides with a tetrapeptide-stem structure, decreased O-acetylation of MurNAc, and increased N-deacetylation of GlcNAc. The changes in peptidoglycan composition suggest that desleucyl-oritavancin targets the peptidoglycan template to induce cell wall disorder and interferes with cell wall maturation. IMPORTANCE Oritavancin is a lipoglycopeptide antibiotic with a secondary binding site that targets the cross-linked peptidoglycan bridge structure in the cell wall. Even after the loss of its primary d-Ala–d-Ala binding site through Edman degradation, desleucyl-oritavancin exhibits potent antimicrobial activities through its still-functioning secondary binding site. In this study, we characterized the mode of action for desleucyl-oritavancin's secondary binding site using LC-MS. Peptidoglycan composition analysis of desleucyl-oritavancin-treated S. aureus was performed by determining the relative abundances of 83 muropeptide ions matched from a precalculated library through integrating extracted ion chromatograms. Our work highlights the use of quantitative peptidoglycan composition analysis by LC-MS to provide insights into the mode of action of glycopeptide antibiotics.


2012 ◽  
Vol 56 (7) ◽  
pp. 3797-3805 ◽  
Author(s):  
Aneela Qamar ◽  
Dasantila Golemi-Kotra

ABSTRACTThefmtAgene is a member of theStaphylococcus aureuscore cell wall stimulon. The FmtA protein interacts with β-lactams through formation of covalent species. Here, we show that FmtA has weakd-Ala-d-Ala-carboxypeptidase activity and is capable of covalently incorporating C14-Gly into cell walls. The fluorescence microscopy study showed that the protein is localized to the cell division septum. Furthermore, we show that wall teichoic acids interact specifically with FmtA and mediate recruitment of FmtA to theS. aureuscell wall. Subjection ofS. aureusto FmtA concentrations of 0.1 μM or less induces autolysis and biofilm production. This effect requires the presence of wall teichoic acids. At FmtA concentrations greater than 0.2 μM, autolysis and biofilm formation inS. aureusare repressed and growth is enhanced. Our findings indicate dual roles of FmtA inS. aureusgrowth, whereby at low concentrations, FmtA may modulate the activity of the major autolysin (AtlA) ofS. aureusand, at high concentrations, may participate in synthesis of cell wall peptidoglycan. These two roles of FmtA may reflect dual functions of FmtA in the absence and presence of cell wall stress, respectively.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Siamand Hosseini ◽  
Alex Curilovs ◽  
Simon M. Cutting

ABSTRACTGenetic manipulation of bacterial spores of the genusBacillushas shown potential for vaccination and for delivery of drugs or enzymes. Remarkably, proteins displayed on the spore surface retain activity and generally are not degraded. The heat stability of spores, coupled with their desiccation resistance, makes them suitable for delivery to humans or to animals by the oral route. Despite these attributes, one regulatory obstacle has remained regarding the fate of recombinant spores shed into the environment as viable spores. We have addressed the biological containment of GMO spores by utilizing the concept of a thymineless death, a phenomenon first reported 6 decades ago. UsingBacillus subtilis, we have inserted chimeric genes in the two thymidylate synthase genes,thyAandthyB, using a two-step process. Insertion is made first atthyAand then atthyBwhereby resistance to trimethoprim enables selection of recombinants. Importantly, this method requires introduction of no new antibiotic resistance genes. Recombinant spores have a strict dependence on thymine (or thymidine), and in its absence cells lyse and die. Insertions are stable with no evidence for suppression or reversion. Using this system, we have successfully created a number of spore vaccines as well as spores displaying active enzymes.IMPORTANCEGenetic manipulation of bacterial spores offers a number of exciting possibilities for public and animal health, including their use as heat-stable vehicles for delivering vaccines or enzymes. Despite this, one remaining problem is the fate of recombinant spores released into the environment where they could survive in a dormant form indefinitely. We describe a solution whereby, following genetic manipulation, the bacterium is rendered dependent on thymine. As a consequence, spores if released would produce bacteria unable to survive, and they would exhibit a thymineless death due to rapid cessation of metabolism. The method we describe has been validated using a number of exemplars and solves a critical problem for containing spores of GMOs in the environment.


Sign in / Sign up

Export Citation Format

Share Document