Novel Flanking DNA Sequences Enhance FOXO1a DNA Binding Affinity but Do Not Alter DNA Bending†

Biochemistry ◽  
2008 ◽  
Vol 47 (26) ◽  
pp. 6809-6818 ◽  
Author(s):  
Alpa Sidhu ◽  
Patrick J. Miller ◽  
Kelly E. Johanson ◽  
Andrew D. Hollenbach
1997 ◽  
Vol 17 (4) ◽  
pp. 1881-1889 ◽  
Author(s):  
T B Acton ◽  
H Zhong ◽  
A K Vershon

The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins found in such diverse organisms as yeast, plants, flies, and humans. To explore the protein-DNA interactions of Mcm1 in vivo and in vitro, we have introduced an extensive series of base pair substitutions into an Mcm1 operator site and examined their effects on Mcm1-mediated transcriptional regulation and DNA-binding affinity. Our results show that Mcm1 uses a mechanism to contact the DNA that has some significant differences from the one used by the human serum response factor (SRF), a closely related MADS box protein in which the three-dimensional structure has been determined. One major difference is that 5-bromouracil-mediated photo-cross-linking experiments indicate that Mcm1 is in close proximity to functional groups in the major groove at the center of the recognition site whereas the SRF protein did not exhibit this characteristic. A more significant difference is that mutations at a position outside of the conserved CC(A/T)6GG site significantly reduce Mcm1-dependent DNA bending, while these substitutions have no effect on DNA bending by SRF. This result shows that the DNA bending by Mcm1 is sequence dependent and that the base-specific requirements for bending differ between Mcm1 and SRF. Interestingly, although these substitutions have a large effect on DNA bending and transcriptional activation by Mcm1, they have a relatively small effect on the DNA-binding affinity of the protein. This result suggests that the degree of DNA bending is important for transcriptional activation by Mcm1.


2016 ◽  
Author(s):  
Monther Alhamdoosh ◽  
Dianhui Wang

Understanding protein-DNA binding affinity is still a mystery for many transcription factors (TFs). Although several approaches have been proposed in the literature to model the DNA-binding specificity of TFs, they still have some limitations. Most of the methods require a cut-off threshold in order to classify a K-mer as a binding site (BS) and finding such a threshold is usually done by handcraft rather than a science. Some other approaches use a prior knowledge on the biological context of regulatory elements in the genome along with machine learning algorithms to build classifier models for TFBSs. Noticeably, these methods deliberately select the training and testing datasets so that they are very separable. Hence, the current methods do not actually capture the TF-DNA binding relationship. In this paper, we present a threshold-free framework based on a novel ensemble learning algorithm in order to locate TFBSs in DNA sequences. Our proposed approach creates TF-specific classifier models using genome-wide DNA-binding experiments and a prior biological knowledge on DNA sequences and TF binding preferences. Systematic background filtering algorithms are utilized to remove non-functional K-mers from training and testing datasets. To reduce the complexity of classifier models, a fast feature selection algorithm is employed. Finally, the created classifier models are used to scan new DNA sequences and identify potential binding sites. The analysis results show that our proposed approach is able to identify novel binding sites in the Saccharomyces cerevisiae [email protected], [email protected]://homepage.cs.latrobe.edu.au/dwang/DNNESCANweb


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


2015 ◽  
Vol 44 (7) ◽  
pp. 3045-3058 ◽  
Author(s):  
Sergey Belikov ◽  
Otto G. Berg ◽  
Örjan Wrange

1991 ◽  
Vol 19 (3) ◽  
pp. 611-616 ◽  
Author(s):  
Dennise D. Dalma-Weiszhausz ◽  
Marc R. Gartenberg ◽  
Donald M. Crothers

2008 ◽  
Vol 49 (22) ◽  
pp. 3620-3624 ◽  
Author(s):  
Ahmed Kamal ◽  
S. Prabhakar ◽  
N. Shankaraiah ◽  
Ch. Ratna Reddy ◽  
P. Venkat Reddy

Sign in / Sign up

Export Citation Format

Share Document