The Effect of Orientation by Solid State Processes on the Amorphous Regions in Poly(vinyl alcohol) and High Density Poly(ethylene)

Author(s):  
Anita J. Hill ◽  
T. J. Bastow ◽  
R. M. Hodge
2018 ◽  
Vol 773 ◽  
pp. 100-105
Author(s):  
Umi Rofiqah ◽  
Achmad Chafidz ◽  
Lilis Kistriyani ◽  
Mujtahid Kaavessina ◽  
Muhammad Rizal ◽  
...  

In the present study, high density poly(ethylene) (HDPE)/poly(vinyl alcohol) (PVA) fiber composites were prepared via melt blending technique using a co-rotating twin screw extruder (TSE). The effect of four different PVA fiber concentrations (i.e. 0, 5, 10, 20 wt%) on the melt and crystallization behavior of the HDPE/PVA fiber composites were investigated. The surface morphology of the composites was analyzed by a scanning electron microscopy (SEM). Whereas, the melt and crystallization behavior of the composites were analyzed by a differential scanning calorimetry (DSC). The SEM analysis on the cryo-fractured surface of the HDPE/PVA fiber composites exhibited that the PVA fibers were well blended/distributed in the HDPE matrix. Additionally, the DSC test results showed that the addition of PVA fiber in the HDPE matrix did not significantly change the melting peak temperature (Tm) of the composites. Furthermore, a slight decrease of the crystallization peak temperature (Tc) can be observed when the PVA fiber was incorporated in the HDPE matrix, which indicated a weak nucleation ability of the PVA fibers in the HDPE crystallization process. The same trend was also observed for the crystallinity index (Xc). The crystallinity index of the composites decreased with increasing PVA fiber loadings.


2011 ◽  
Vol 2 (4) ◽  
pp. 131-148 ◽  
Author(s):  
Francis Vidya ◽  
Subin S. Raghul ◽  
Sarita G Bhat ◽  
Eby Thomas Thachil

The main objective of this study was to enhance the rate of UV and biodegradation of polyethylene by incorporating biodegradable materials and prooxidants. Prooxidants such as transition metal complexes are capable of initiating photooxidation and polymer chain cleavage, rendering the product more susceptible to biodegradation. In this work, the effect of (1) a metallic photoinitiator, cobalt stearate, and (2) different combinations of cobalt stearate and vegetable oil on the photooxidative degradation of linear low-density poly(ethylene)-poly(vinyl alcohol) (LLDPE/PVA) blend films has been investigated. For this, film-grade LLDPE was blended with different proportions of PVA. PVA is widely used in the industrial field, and recently it has attracted increasing attention as a water-soluble biodegradable polymer. Cobalt stearate and vegetable oil were added to the blends as prooxidants. The blends were prepared by melt mixing in a Thermo HAAKE Polylab system. Thin films containing these additives were prepared by a subsequent compression moulding process. The effect of UV exposure on LLDPE/PVA films in the presence as well as absence of these additives was investigated. Tensile properties, FTIR spectra, and scanning electron microscopy (SEM) were employed to investigate the degradation behaviour. It was found


2016 ◽  
Vol 54 (13) ◽  
pp. 1217-1226 ◽  
Author(s):  
Ainhoa Lejardi ◽  
Jose-Ramon Sarasua ◽  
Agustin Etxeberria ◽  
Emilio Meaurio

1995 ◽  
Vol 28 (19) ◽  
pp. 6677-6679 ◽  
Author(s):  
Masatoshi Kobayashi ◽  
Isao Ando ◽  
Takahiro Ishii ◽  
Shigetoshi Amiya

Sign in / Sign up

Export Citation Format

Share Document