Altered Glucose Transport and Shikimate Pathway Product Yields in E. coli

2003 ◽  
Vol 19 (5) ◽  
pp. 1450-1459 ◽  
Author(s):  
J. Yi ◽  
K.M. Draths ◽  
K. Li ◽  
J.W. Frost
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chun-Kai Yang ◽  
Des R. Kashyap ◽  
Dominik A. Kowalczyk ◽  
David Z. Rudner ◽  
Xindan Wang ◽  
...  

AbstractMammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa3-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa3-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria.


2018 ◽  
Author(s):  
Daoyi Guo ◽  
Lihua Zhang ◽  
Sijia Kong ◽  
Zhijie Liu ◽  
Xu Chu ◽  
...  

ABSTRACTIndole-3-acetic acid (IAA) is considered the most common and important naturally occurring auxin in plants and a major regulator of plant growth and development. In addition, phenylacetic acid (PAA) and 4-hydroxyphenylacetic acid (4HPA) can also play a role as auxin in some plants. In recent years, several microbes have been metabolically engineered to produce IAA from L-tryptophan. In this study, we showed that aminotransferasearo8and decarboxylasekdcfromSaccharomyces cerevisiae, and aldehyde dehydrogenasealdHfromEscherichia colihave broad substrate ranges and can catalyze the conversion of three kinds of aromatic amino acids (L-tryptophan, L-tyrosine or L-phenylalanine) to the corresponding IAA, 4HPA and PAA. Subsequently, three de novo biosynthetic pathways for the production of IAA, PAA and 4HPA from glucose were constructed inE. colithrough strengthening the shikimate pathway. This study described here shows the way for the development of agricultural microorganism for biosynthesis of plant auxin and promoting plant growth in the future.


2008 ◽  
Vol 74 (17) ◽  
pp. 5497-5503 ◽  
Author(s):  
Ya-Jun Liu ◽  
Pan-Pan Li ◽  
Ke-Xin Zhao ◽  
Bao-Jun Wang ◽  
Cheng-Ying Jiang ◽  
...  

ABSTRACT 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 2.5.1.54) catalyzes the first step of the shikimate pathway that finally leads to the biosynthesis of aromatic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). In Corynebacterium glutamicum ATCC 13032, two chromosomal genes, NCgl0950 (aroF) and NCgl2098 (aroG), were located that encode two putative DAHP synthases. The deletion of NCgl2098 resulted in the loss of the ability of C. glutamicum RES167 (a restriction-deficient strain derived from C. glutamicum ATCC 13032) to grow in mineral medium; however, the deletion of NCgl0950 did not result in any observable phenotypic alteration. Analysis of DAHP synthase activities in the wild type and mutants of C. glutamicum RES167 indicated that NCgl2098, rather than NCgl0950, was involved in the biosynthesis of aromatic amino acids. Cloning and expression in Escherichia coli showed that both NCgl0950 and NCgl2098 encoded active DAHP synthases. Both the NCgl0950 and NCgl2098 DAHP synthases were purified from recombinant E. coli cells and characterized. The NCgl0950 DAHP synthase was sensitive to feedback inhibition by Tyr and, to a much lesser extent, by Phe and Trp. The NCgl2098 DAHP synthase was slightly sensitive to feedback inhibition by Trp, but not sensitive to Tyr and Phe, findings that were in contrast to the properties of previously known DAHP synthases from C. glutamicum subsp. flavum. Both Co2+ and Mn2+ significantly stimulated the NCgl0950 DAHP synthase's activity, whereas Mn2+ was much more stimulatory than Co2+ to the NCgl2098 DAHP synthase's activity.


2004 ◽  
Vol 10 (S02) ◽  
pp. 1542-1543
Author(s):  
Jennifer L. Morrell ◽  
Claretta J. Sullivan ◽  
Peter R. Hoyt ◽  
David P. Allison ◽  
Mitchel J. Doktycz

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


Diabetes ◽  
2000 ◽  
Vol 49 (4) ◽  
pp. 527-531 ◽  
Author(s):  
T. Hayashi ◽  
M. F. Hirshman ◽  
N. Fujii ◽  
S. A. Habinowski ◽  
L. A. Witters ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document