Evaluation of Binary QSAR Models Derived from LUDI and MOE Scoring Functions for Structure Based Virtual Screening

2006 ◽  
Vol 46 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Philip Prathipati ◽  
Anil K. Saxena
2019 ◽  
Vol 86 ◽  
pp. 264-277 ◽  
Author(s):  
Tarek Kanan ◽  
Duaa Kanan ◽  
Ismail Erol ◽  
Samira Yazdi ◽  
Matthias Stein ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 43
Author(s):  
Jacob Spiegel ◽  
Hanoch Senderowitz

Virtual screening (VS) is a well-established method in the initial stages of many drug and material design projects. VS is typically performed using structure-based approaches such as molecular docking, or various ligand-based approaches. Most docking tools were designed to be as global as possible, and consequently only require knowledge on the 3D structure of the biotarget. In contrast, many ligand-based approaches (e.g., 3D-QSAR and pharmacophore) require prior development of project-specific predictive models. Depending on the type of model (e.g., classification or regression), predictive ability is typically evaluated using metrics of performance on either the training set (e.g.,QCV2) or the test set (e.g., specificity, selectivity or QF1/F2/F32). However, none of these metrics were developed with VS in mind, and consequently, their ability to reliably assess the performances of a model in the context of VS is at best limited. With this in mind we have recently reported the development of the enrichment optimization algorithm (EOA). EOA derives QSAR models in the form of multiple linear regression (MLR) equations for VS by optimizing an enrichment-based metric in the space of the descriptors. Here we present an improved version of the algorithm which better handles active compounds and which also takes into account information on inactive (either known inactive or decoy) compounds. We compared the improved EOA in small-scale VS experiments with three common docking tools, namely, Glide-SP, GOLD and AutoDock Vina, employing five molecular targets (acetylcholinesterase, human immunodeficiency virus type 1 protease, MAP kinase p38 alpha, urokinase-type plasminogen activator, and trypsin I). We found that EOA consistently outperformed all docking tools in terms of the area under the ROC curve (AUC) and EF1% metrics that measured the overall and initial success of the VS process, respectively. This was the case when the docking metrics were calculated based on a consensus approach and when they were calculated based on two different sets of single crystal structures. Finally, we propose that EOA could be combined with molecular docking to derive target-specific scoring functions.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2600
Author(s):  
Fábio G. Martins ◽  
André Melo ◽  
Sérgio F. Sousa

Biofilms are aggregates of microorganisms anchored to a surface and embedded in a self-produced matrix of extracellular polymeric substances and have been associated with 80% of all bacterial infections in humans. Because bacteria in biofilms are less amenable to antibiotic treatment, biofilms have been associated with developing antibiotic resistance, a problem that urges developing new therapeutic options and approaches. Interfering with quorum-sensing (QS), an important process of cell-to-cell communication by bacteria in biofilms is a promising strategy to inhibit biofilm formation and development. Here we describe and apply an in silico computational protocol for identifying novel potential inhibitors of quorum-sensing, using CviR—the quorum-sensing receptor from Chromobacterium violaceum—as a model target. This in silico approach combines protein-ligand docking (with 7 different docking programs/scoring functions), receptor-based virtual screening, molecular dynamic simulations, and free energy calculations. Particular emphasis was dedicated to optimizing the discrimination ability between active/inactive molecules in virtual screening tests using a target-specific training set. Overall, the optimized protocol was used to evaluate 66,461 molecules, including those on the ZINC/FDA-Approved database and to the Mu.Ta.Lig Virtual Chemotheca. Multiple promising compounds were identified, yielding good prospects for future experimental validation and for drug repurposing towards QS inhibition.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Maciej Wójcikowski ◽  
Pedro J. Ballester ◽  
Pawel Siedlecki

2020 ◽  
Author(s):  
Pedro Ballester

Interest in docking technologies has grown parallel to the ever increasing number and diversity of 3D models for macromolecular therapeutic targets. Structure-Based Virtual Screening (SBVS) aims at leveraging these experimental structures to discover the necessary starting points for the drug discovery process. It is now established that Machine Learning (ML) can strongly enhance the predictive accuracy of scoring functions for SBVS by exploiting large datasets from targets, molecules and their associations. However, with greater choice, the question of which ML-based scoring function is the most suitable for prospective use on a given target has gained importance. Here we analyse two approaches to select an existing scoring function for the target along with a third approach consisting in generating a scoring function tailored to the target. These analyses required discussing the limitations of popular SBVS benchmarks, the alternatives to benchmark scoring functions for SBVS and how to generate them or use them using freely-available software.


2020 ◽  
Vol 60 (8) ◽  
pp. 4047-4055
Author(s):  
Yusuf Serhat Is ◽  
Busecan Aksoydan ◽  
Murat Senturk ◽  
Mine Yurtsever ◽  
Serdar Durdagi

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3909 ◽  
Author(s):  
Amit Kumar Halder ◽  
Amal Kanta Giri ◽  
Maria Natália Dias Soeiro Cordeiro

Two isoforms of extracellular regulated kinase (ERK), namely ERK-1 and ERK-2, are associated with several cellular processes, the aberration of which leads to cancer. The ERK-1/2 inhibitors are thus considered as potential agents for cancer therapy. Multitarget quantitative structure–activity relationship (mt-QSAR) models based on the Box–Jenkins approach were developed with a dataset containing 6400 ERK inhibitors assayed under different experimental conditions. The first mt-QSAR linear model was built with linear discriminant analysis (LDA) and provided information regarding the structural requirements for better activity. This linear model was also utilised for a fragment analysis to estimate the contributions of ring fragments towards ERK inhibition. Then, the random forest (RF) technique was employed to produce highly predictive non-linear mt-QSAR models, which were used for screening the Asinex kinase library and identify the most potential virtual hits. The fragment analysis results justified the selection of the hits retrieved through such virtual screening. The latter were subsequently subjected to molecular docking and molecular dynamics simulations to understand their possible interactions with ERK enzymes. The present work, which utilises in-silico techniques such as multitarget chemometric modelling, fragment analysis, virtual screening, molecular docking and dynamics, may provide important guidelines to facilitate the discovery of novel ERK inhibitors.


Sign in / Sign up

Export Citation Format

Share Document