An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

2011 ◽  
Vol 89 (4) ◽  
pp. 548-551 ◽  
Author(s):  
Ronald P. D’Amelia ◽  
Daniel Clark ◽  
William Nirode
Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2016
Author(s):  
Honghua Wang ◽  
Qilin Mei ◽  
Yujie Ding ◽  
Zhixiong Huang ◽  
Minxian Shi

Diallyl orthophthalate (DAOP) prepolymer was investigated as a reactive plasticizer to improve the processability of thermoplastics. The rheology of blends of DAOP prepolymer initiated by 2,3-dimethyl-2,3-diphenylbutane (DMDPB) and polyphenylene oxide (PPO) was monitored during the curing process, and their thermal properties and morphology in separated phases were also studied. Differential scanning calorimetry (DSC) results showed that the cure degree of the reactively plasticized DAOP prepolymer was reduced with increasing PPO due to the dilution effect. The increasing amount of the DAOP prepolymer led to a gradual decrease in the viscosity of the blends and the rheology behavior was consistent with the chemical gelation of DAOP prepolymer in blends. This indicated that the addition of the DAOP prepolymer effectively improved processability. The phase separation occurring during curing of the blend and the transition from the static to dynamic mode significantly influences the development of the morphology of the blend corresponding to limited evolution of the conversion around the gel point.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 295 ◽  
Author(s):  
Wojciech Wałach ◽  
Natalia Oleszko-Torbus ◽  
Alicja Utrata-Wesołek ◽  
Marcelina Bochenek ◽  
Ewa Kijeńska-Gawrońska ◽  
...  

Poly(2-oxazoline) (POx) matrices in the form of non-woven fibrous mats and three-dimensional moulds were obtained by electrospinning and fused deposition modelling (FDM), respectively. To obtain these materials, poly(2-isopropyl-2-oxazoline) (PiPrOx) and gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)), with relatively low molar masses and low dispersity values, were processed. The conditions for the electrospinning of POx were optimised for both water and the organic solvent. Also, the FDM conditions for the fabrication of POx multi-layer moulds of cylindrical or cubical shape were optimised. The properties of the POx after electrospinning and extrusion from melt were determined. The molar mass of all (co)poly(2-oxazoline)s did not change after electrospinning. Also, FDM did not influence the molar masses of the (co)polymers; however, the long processing of the material caused degradation and an increase in molar mass dispersity. The thermal properties changed significantly after processing of POx what was monitored by increase in enthalpy of exo- and endothermic peaks in differential scanning calorimetry (DSC) curve. The influence of the processing conditions on the structure and properties of the final material were evaluated having in a mind their potential application as scaffolds.


2007 ◽  
Vol 21 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Cláudio Maniglia-Ferreira ◽  
Eduardo Diogo Gurgel-Filho ◽  
João Batista Araújo Silva Jr ◽  
Regina Célia Monteiro de Paula ◽  
Judith Pessoa Andrade Feitosa ◽  
...  

This study was undertaken to explore the effect of heating on gutta-percha, analyzing the occurrence of endothermic peaks corresponding to the transformation that occurs in the crystalline structure of the polymer during thermal manipulation. This study also seeked to determine the temperature at which these peaks occur, causing a transformation from the beta- to the alpha-form, and from the alpha- to the amorphous phase. Eight nonstandardized gutta-percha points commercially available in Brazil (Konne, Tanari, Endopoint, Odous, Dentsply 0.04, Dentsply 0.06, Dentsply TP, Dentsply FM) and pure gutta-percha (control) were analysed using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The transition temperatures were determined and analysed. With the exception of Dentsply 0.04 and Dentsply 0.06, the majority of the products showed thermal behaviour typical of beta-gutta-percha, with two endothermic peaks, exhibiting two crystalline transformations upon heating from ambient temperature to 130°. Upon cooling and reheating, few samples presented two endothermic peaks. It was concluded that heating dental gutta-percha to 130°C causes changes to its chemical structure which permanently alter its physical properties.


2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


2020 ◽  
Vol 20 (8) ◽  
pp. 4657-4660
Author(s):  
Kyeong Hyeon Kim ◽  
Jae Hyeok Lee ◽  
Dong-Eun Kim ◽  
Hoon-Kyu Shin ◽  
Burm-Jong Lee

An isomeric series of phosphine oxides with N-phenyl benzimidazole such as 2-DPPI, 3-DPPI and 4-DPPI were synthesized for organic light emitting diodes (OLED). The thermal properties of DPPI isomers were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). OLED devices using DPPI isomers as the emitting material were fabricated, which configuration was ITO/MoOx [30 nm]/NPB [500 nm]/DPPI [300 nm]/Alq3 [200 nm]/Liq[10 nm]/Al [120 nm]. The emitting colors of the devices were respectively a deep-blue (430 nm, 4-DPPI) and greenish-yellows (510–580 nm, 3-DPPI and 530 nm, 2-DPPI). In particular, the emitting color of 4-DPPI device was not changed during the alteration of applied voltages (6.5–11.5 V), and the CIE coordinate was a satisfactory deep-blue (0.161, 0.101).


Nahrung/Food ◽  
2003 ◽  
Vol 47 (3) ◽  
pp. 161-165 ◽  
Author(s):  
Folake O. Henshaw ◽  
Kay H. McWatters ◽  
John O. Akingbala ◽  
Manjeet S. Chinnan

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2636
Author(s):  
Tomasz M. Majka ◽  
Oskar Bartyzel ◽  
Konstantinos N. Raftopoulos ◽  
Joanna Pagacz ◽  
Krzysztof Pielichowski

Pyrolysis of the polypropylene/montmorillonite (PP/OMMT) nanocomposites allows for recovery of the filler that can be then re–used to produce PP/pyrolyzed MMT (PMMT) nanostructured composites. In this work, we discuss the thermal properties of PP/PMMT composites investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It has been found that effect of PMMT (5 wt. % and 10 wt. %) on matrix thermal stability occurs at temperatures above 300 °C. Addition of 5 wt. % and 10 wt. % of PMMT into polypropylene system gave good stabilization effect, as confirmed by the overall stabilization effect (OSE) values, which increased by 4% and 7%, respectively, compared to the control sample (PP). Interestingly, the presence of 1 wt. % and 3 wt. % of pyrolyzed clay stabilizes the system better than the same concentrations of organoclay added into polypropylene melt. DSC data revealed that pyrolyzed clay has still the same tendency as organoclay to enhance formation of the α and β crystalline PP phases only. The pyrolyzed MMT causes an improvement of the modulus in the glassy as well as rubbery regions, as confirmed by DMA results.


Sign in / Sign up

Export Citation Format

Share Document