Vehicle Specific Power Approach to Estimating On-Road NH3Emissions from Light-Duty Vehicles

2005 ◽  
Vol 39 (24) ◽  
pp. 9595-9600 ◽  
Author(s):  
Tao Huai ◽  
Thomas D. Durbin ◽  
Ted Younglove ◽  
George Scora ◽  
Matthew Barth ◽  
...  
Author(s):  
Meng Lyu ◽  
Xiaofeng Bao ◽  
Yunjing Wang ◽  
Ronald Matthews

Vehicle emissions standards and regulations remain weak in high-altitude regions. In this study, vehicle emissions from both the New European Driving Cycle and the Worldwide harmonized Light-duty driving Test Cycle were analyzed by employing on-road test data collected from typical roads in a high-altitude city. On-road measurements were conducted on five light-duty vehicles using a portable emissions measurement system. The certification cycle parameters were synthesized from real-world driving data using the vehicle specific power methodology. The analysis revealed that under real-world driving conditions, all emissions were generally higher than the estimated values for both the New European Driving Cycle and Worldwide harmonized Light-duty driving Test Cycle. Concerning emissions standards, more CO, NOx, and hydrocarbons were emitted by China 3 vehicles than by China 4 vehicles, whereas the CO2 emissions exhibited interesting trends with vehicle displacement and emissions standards. These results have potential implications for policymakers in regard to vehicle emissions management and control strategies aimed at emissions reduction, fleet inspection, and maintenance programs.


Author(s):  
Zeyu Zhang ◽  
Guohua Song ◽  
Zhiqiang Zhai ◽  
Chenxu Li ◽  
Yizheng Wu

Vehicle-specific power (VSP) distributions, or operating mode (OpMode) distributions, are one of the most important parameters in VSP-based emission models, such as the motor vehicle emission simulator (MOVES) model. The collection of second-by-second vehicle activity data is required to develop facility- and speed-specific (FaSS) VSP distributions. This then raises the problem of how many trajectories are needed to develop FaSS VSP distributions for emission estimation. This study attempts to investigate the adaptive sample size for developing robust VSP distributions for emission estimations for light-duty vehicles. First, vehicle activity data are divided into trajectories and categorized into different trajectory pools. Then, the uncertainty of FaSS VSP distribution caused by sample size is analyzed. Further, the relationship between VSP distribution sample size and emission factor uncertainty is discussed. The case study indicates that error in developing FaSS VSP distributions decreases significantly with increased sample size. In different speed bins, the sample size required to develop robust FaSS VSP distributions and estimate emission factors is significantly different. In detail, in each speed bin, for a 90% confidence level, 30 trajectories (1,800 s) are enough to develop robust FaSS VSP distributions for light-duty vehicles with the root mean square errors (RMSEs) lower than 2%, which means errors in calculating fuel consumption and greenhouse gas (GHG) emissions are lower than 5%. However, 35 trajectories (2,100 s) are needed to estimate emissions of carbon monoxide (CO), nitrogen oxide (NOX), and hydrocarbons (HC) with an estimation error lower than 5%.


Author(s):  
Jia Li ◽  
Hanhui He ◽  
Bo Peng

The key correlating traffic variable for modeling vehicle emissions has evolved from average speed to vehicle-specific power (VSP), and recently to operating mode as defined in Motor Vehicle Emission Simulator (MOVES). The analysis of operating mode and its distribution, however, requires a large amount of data and is time consuming and challenging. This paper attempts to build models between the operating mode distributions and the common traffic variable—average speed—to facilitate the emission estimation. Focusing on light-duty vehicles and unrestricted access roadways, a floating car survey was conducted separately on arterials and collectors in Shaoshan, China. The trajectory data were processed to reveal the characteristics of operating mode distributions. A key finding is that, when the data points of the operating mode of idle are excluded, the VSP distributions of the remaining data points follow logistic distributions and the parameters can be linearly regressed with the average speed. Arterials and collectors feature different operating mode distributions even at the same average speed, and therefore different models were developed. The models were then applied to generate operating mode distributions, which were validated with the real-world data from the test bed and which, when compared with the default values generated by MOVES, fit the real-world condition better.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1125
Author(s):  
Hui Mei ◽  
Lulu Wang ◽  
Menglei Wang ◽  
Rencheng Zhu ◽  
Yunjing Wang ◽  
...  

On-road exhaust emissions from light-duty vehicles are greatly influenced by driving conditions. In this study, two light-duty passenger cars (LDPCs) and three light-duty diesel trucks (LDDTs) were tested to investigate the on-road emission factors (EFs) with a portable emission measurement system. Emission characteristics of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) emitted from vehicles at different speeds, accelerations and vehicle specific power (VSP) were analyzed. The results demonstrated that road conditions have significant impacts on regulated gaseous emissions. CO, NOx, and HC emissions from light-duty vehicles on urban roads increased by 1.1–1.5, 1.2–1.4, and 1.9–2.6 times compared with those on suburban and highway roads, respectively. There was a rough positive relationship between transient CO, NOx, and HC emission rates and vehicle speeds, while the EFs decreased significantly with the speed decrease when speed ≤ 20 km/h. The emissions rates of NOx and HC tended to increase and then decrease as the acceleration increased and the peak occurred at 0 m/s2 without considering idling conditions. For HC and CO, the emission rates were low and changed gently with VSP when VSP < 0, while emission rates increased gradually with the VSP increase when VSP > 0. For NOx NOx emission rates were lower and had no obvious change when VSP < 0. However, NOx emissions were positively correlated with VSP, when VSP > 0.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 661
Author(s):  
Alexandros T. Zachiotis ◽  
Evangelos G. Giakoumis

A Monte Carlo simulation methodology is suggested in order to assess the impact of ambient wind on a vehicle’s performance and emissions. A large number of random wind profiles is generated by implementing the Weibull and uniform statistical distributions for wind speed and direction, respectively. Wind speed data are drawn from eight cities across Europe. The vehicle considered is a diesel-powered, turbocharged, light-commercial vehicle and the baseline trip is the worldwide harmonized light-duty vehicles WLTC cycle. A detailed engine-mapping approach is used as the basis for the results, complemented with experimentally derived correction coefficients to account for engine transients. The properties of interest are (engine-out) NO and soot emissions, as well as fuel and energy consumption and CO2 emissions. Results from this study show that there is an aggregate increase in all properties, vis-à-vis the reference case (i.e., zero wind), if ambient wind is to be accounted for in road load calculation. Mean wind speeds for the different sites examined range from 14.6 km/h to 24.2 km/h. The average increase in the properties studied, across all sites, ranges from 0.22% up to 2.52% depending on the trip and the property (CO2, soot, NO, energy consumption) examined. Based on individual trip assessment, it was found that especially at high vehicle speeds where wind drag becomes the major road load force, CO2 emissions may increase by 28%, NO emissions by 22%, and soot emissions by 13% in the presence of strong headwinds. Moreover, it is demonstrated that the adverse effect of headwinds far exceeds the positive effect of tailwinds, thus explaining the overall increase in fuel/energy consumption as well as emissions, while also highlighting the shortcomings of the current certification procedure, which neglects ambient wind effects.


2021 ◽  
Vol 783 ◽  
pp. 147101
Author(s):  
Yanzhao Hao ◽  
Shunxi Deng ◽  
Zhaowen Qiu ◽  
Zhenzhen Lu ◽  
Hui Song ◽  
...  

Author(s):  
Essam Dabbour ◽  
Said M. Easa

This paper introduces realistic acceleration profiles for light-duty vehicles departing from rest at two-way stop-controlled (TWSC) intersections where minor roads (controlled by stop signs) intersect with uncontrolled major roads. The new profiles are based on current vehicle characteristics and driver behavior patterns. They are established based on actual field data collected using global positioning system data loggers that recorded the positional and speed data of various experimental vehicles starting from rest at TWSC intersections. Acceleration profiles are established in this paper and are used to develop a revised method for calculating the departure sight distance at TWSC intersections. Design tables were created to provide realistic sight distance values at TWSC intersections for different design speeds and number of lanes on the major road. It was found that the current values of intersection sight distance suggested by the design guides may be inadequate. Such values may force some approaching drivers on the major road to reduce their speeds or move to different traffic lanes to avoid conflicting with the departing vehicles. These maneuvers may have negative impacts on traffic safety. Therefore, implementing the revised method for calculating intersection sight distance, as presented in this paper, may ultimately reduce traffic collisions at TWSC intersections.


Sign in / Sign up

Export Citation Format

Share Document