Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model

2011 ◽  
Vol 45 (13) ◽  
pp. 5470-5476 ◽  
Author(s):  
James W. Levis ◽  
Morton A. Barlaz

Author(s):  
Dominic Woolf ◽  
Johannes Lehmann ◽  
Stephen Ogle ◽  
Ayaka W. Kishimoto-Mo ◽  
Brian McConkey ◽  
...  








2012 ◽  
Vol 36 (3) ◽  
pp. 803-812 ◽  
Author(s):  
Juliana Lundgren Rose ◽  
Cláudio Fernando Mahler ◽  
Ronaldo Luis dos Santos Izzo

Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.



2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Hesam Kamyab ◽  
Jeng Shiun Lim ◽  
Tayebeh Khademi ◽  
Wai Shin Hod ◽  
Rahmalan Ahmad ◽  
...  

Waste generation nowadays is rising in the world and it seems hard to prevent it. Solid Waste Management (SWM) has been a major problem worldwide in most of the fast growing towns and cities among the developing countries all around the world. Food waste and green waste constitute high volumes of municipal solid waste (MSW). The application of compost in the agricultural sector can contribute to sustainable soil health and other co-benefits. The compost produced from biological waste does not contain any chemicals unfavorable to living soil. The objective of this research was to calculate the greenhouse gas emission from the compost processed from the food and green wastes generated on-campus in Universiti Teknologi Malaysia (UTM) as a pilot project. The result indicated that the composting process promotes the university as a green campus by converting organic wastes into valuable products such as organic fertilizer.



2019 ◽  
Vol 25 (4) ◽  
pp. 462-469
Author(s):  
Kanchan Popli ◽  
Jeejae Lim ◽  
Hyeon Kyeong Kim ◽  
Young Min Kim ◽  
Nguyen Thanh Tuu ◽  
...  

This study is proposing a System Dynamics Model for estimating Greenhouse Gas (GHG) emission from treating Municipal Solid Waste (MSW) in South Korea for years 2000 to 2030. The government of country decided to decrease the total GHG emission from waste sector in 2030 as per Business-as-usual level. In context, four scenarios are generated to predict GHG emission from treating the MSW with three processes i.e., landfill, incineration and recycling. For prior step, MSW generation rate is projected for present and future case using population and waste generation per capita data. It is found that population and total MSW are directly correlated. The total population will increase to 56.27 million and total MSW will be 21.59 million tons in 2030. The methods for estimating GHG emission from landfill, incineration and recycling are adopted from IPCC, 2006 guidelines. The study indicates that Scenario 2 is best to adopt for decreasing the total GHG emission in future where recycling waste is increased to 75% and landfill waste is decreased to 7.6%. Lastly, it is concluded that choosing proper method for treating the MSW in country can result into savings of GHG emission.



Sign in / Sign up

Export Citation Format

Share Document