Scaling Trace Organic Contaminant Adsorption Capacity by Granular Activated Carbon

2010 ◽  
Vol 44 (14) ◽  
pp. 5403-5408 ◽  
Author(s):  
Christopher J. Corwin ◽  
R. Scott Summers
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 598
Author(s):  
David Ribes ◽  
Emilia Morallón ◽  
Diego Cazorla-Amorós ◽  
Francisco Osorio ◽  
María J. García-Ruiz

The adsorption and electroadsorption of bromide from natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as the adsorbent. During electroadsorption experiments, different voltages were applied (2 V, 3 V and 4 V) under anodic conditions. The presence of the electric field improves the adsorption capacity of the activated carbon. The decrease in bromide concentration observed at high potentials (3 V or 4 V) may be due to the electrochemical transformation of bromide to Br2. The anodic treatment produces a higher decrease in the concentration of bromide in the case of cathodic electroadsorption. Moreover, in this anodic electroadsorption, if the system is again put under open circuit conditions, no desorption of the bromide is produced. In the case of anodic treatment in the following adsorption process after 24 h of treatment at 3 V, a new decrease in the bromide concentration is observed as a consequence of the decrease in bromide concentration after the electrochemical stage. It can be concluded that the electroadsorption process is effective against the elimination of bromide and total bromine in water, with a content of 345 and 470 µg L−1, respectively, reaching elimination values of 46% in a single-stage electroadsorption process in bromide and total bromine. The application of the electric field to the activated carbon with a positive polarization (anodic electroadsorption) increases the adsorption capacity of the activated carbon significantly, achieving a reduction of up to 220 µg L−1 after 1 h of contact with water. The two stage process in which a previous electrochemical oxidation is incorporated before the electroadsorption stage significantly increased the efficiency from 46% in a single electroadsorption step at 3 V, to 59% in two stages.


2012 ◽  
Vol 164 ◽  
pp. 297-301 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qing Chao Gong ◽  
Cun Cun Chen ◽  
Cai Hong Zheng ◽  
...  

Low cost carbonaceous materials were evaluated for their ability to remove phenol from wastewater. The effects of adsorbents dosage, contact time and maximum adsorption capacity were investigated for granular activated carbon, powdered activated carbon, petroleum coke and multi-walled carbon nanotube (MWNT). Equilibrium studies were conducted in 50mg/L initial phenol concentration, solution pH of 5 and at temperature of 23°C. The results showed the adsorption process was fast and it reached equilibrium in 3 h. Petroleum coke and MWNT had poor adsorption which could reach the removal efficiency of phenol with 43.18% and 36.64% respectively. The granular activated carbon possessed good adsorption ability to phenol with 96.40% at the optimum dosage 5g and optimum time 90min.The powdered activated carbon was an effective adsorbent with a maximum adsorption capacity of 42.32 mg/g.


2019 ◽  
Vol 5 (3) ◽  
pp. 609-617 ◽  
Author(s):  
Yifeng Huang ◽  
Zhijie Nie ◽  
Jie Yuan ◽  
Audrey Murray ◽  
Yi Li ◽  
...  

A test was developed to measure the present-day adsorptive capacity of granular activated to help drinking water treatment professionals to determine when the GAC needs replacement.


2008 ◽  
Vol 42 (7) ◽  
pp. 2606-2611 ◽  
Author(s):  
Priscilla C. To ◽  
Benito J. Mariñas ◽  
Vernon L. Snoeyink ◽  
Wun Jern Ng

1997 ◽  
Vol 35 (7) ◽  
pp. 197-204 ◽  
Author(s):  
Sarah L. VanderLoop ◽  
Makram T. Suidan ◽  
Sandra R. Berchtold ◽  
Moustafa A. Moteleb ◽  
Stephen W. Maloney

Munitions wastewaters are commonly treated by granular activated carbon (GAC) adsorption followed by incineration of the spent carbon. The design of effective GAC unit processes hinges on the knowledge of GAC adsorption capacity for the compounds of interest as well as the types of chemical interactions to expect. GAC can often catalyze polymerization or chemical degradation of the adsorbate in the presence of molecular oxygen. Some adsorbates, though less common, may be subject to catalytic activity even when no molecular oxygen is present. The products of these interactions may enhance or interfere with effective waste treatment. This study individually evaluated the adsorption properties of a variety of energetics compounds. A number of surface catalyzed polymerization and degradation reactions were noted.


2014 ◽  
Vol 57 ◽  
pp. 339 ◽  
Author(s):  
M.I. Rakowska ◽  
D. Kupryianchyk ◽  
M.P.J. Smit ◽  
A.A. Koelmans ◽  
J.T.C. Grotenhuis ◽  
...  

2019 ◽  
Vol 5 (5) ◽  
pp. 849-860 ◽  
Author(s):  
Kyle K. Shimabuku ◽  
Thomas L. Zearley ◽  
Katherine S. Dowdell ◽  
R. Scott Summers

Biologically acclimated sand and granular activated carbon (GAC) filter performance for trace organic contaminant control is compared under variable water quality and operational conditions.


Sign in / Sign up

Export Citation Format

Share Document