Normalized kinetic field potentials for atom-diatom reactions. Three-dimensional surfaces from the relaxed bond energy-bond order model

1981 ◽  
Vol 85 (24) ◽  
pp. 3618-3628 ◽  
Author(s):  
Roman F. Nalewajski ◽  
Roman Pastewski
Author(s):  
Takafumi Nishino ◽  
Richard H. J. Willden

Recent discoveries on the limiting efficiency of tidal fences are reviewed, followed by a new theoretical investigation into the effect of wake mixing on the efficiency of ‘full’ tidal fences (i.e. turbines arrayed regularly across an entire channel span). The new model is based on the momentum and energy balance equations but includes several unclosed terms, which depend on the actual (three-dimensional) characteristics of turbine near-wake mixing and therefore need to be modelled empirically. The new model agrees well with three-dimensional actuator disk simulations when those unclosed terms are assessed based on the simulations themselves, suggesting that this low-order model could serve as a basis to analyse how various physical factors (such as the design of turbines) affect the limiting efficiency of tidal fences via changes in those terms describing the characteristics of turbine near-wake mixing. Also discussed is the effect of wake mixing on the efficiency of ‘partial’ tidal fences.


Author(s):  
Kiyoshi Takagi ◽  
Hidekazu Nishimura

Abstract This paper deals with modeling and control of a crane mounted on a tower-like flexible structure. A fast transfer of the load causes the sway of the load rope and the vibration of the flexible structure. Our object is to control both the sway and the vibration by the inherent capability of the tower crane. This paper makes its three-dimensional models for simulation and reduced-order-model in order to design the decentralized control system. Then, we design the decentralized H∞ compensator and verify the efficiency by simulations and experiments.


2019 ◽  
Vol 179 ◽  
pp. 406-413 ◽  
Author(s):  
Christian Oberdorfer ◽  
Wolfgang Windl
Keyword(s):  

2018 ◽  
Vol 20 (42) ◽  
pp. 27059-27068 ◽  
Author(s):  
Hossein Eslami ◽  
Parvin Sedaghat ◽  
Florian Müller-Plathe

Local order parameters for the characterization of liquid and different two- and three-dimensional crystalline structures are presented.


1950 ◽  
Vol 18 (8) ◽  
pp. 1116-1117 ◽  
Author(s):  
Georgio Nebbia
Keyword(s):  

Author(s):  
Austin Curtis ◽  
James Mynderse ◽  
Hamid Vejdani

Abstract Inspired by the agility and maneuverability of running kangaroos, a prototype robot was developed using a reduced order model to constrain the system. Both passive and active models were used to understand the relationship between system parameters and gait performance. A frequency response experiment was performed on the prototype to quantify the relationship between design parameters and system responses. Additionally, preliminary tail controllers were tested. Based on the results of the initial platform, a new robot was designed and built as a platform for the study of three dimensional hopping.


Author(s):  
Felice Arena ◽  
Alfredo Ascanelli

The interest and the studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well known that nonlinearities influence wave crest and wave trough distributions, both deviating from Rayleigh law. In this paper a theoretical crest distribution is obtained taking into account the extension of Boccotti’s Quasi Determinism theory, up to the second order for the case of three-dimensional waves, in finite water depth. To this purpose the Fedele & Arena [2005] distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall second order model shows the theoretical confirmation of his conclusion: the crest distribution in deep water for long-crested and short crested waves are very close to each other; in shallow water the crest heights in three dimensional waves are greater than values given by long-crested model.


Author(s):  
Teng Cao ◽  
Liping Xu

In this paper, a low-order model for predicting performance of radial turbocharger turbines is presented. The model combines an unsteady quasi-three-dimensional (Q3D) computational fluid dynamics (CFD) method with multiple one-dimensional (1D) meanline impeller solvers. The new model preserves the critical volute geometry features, which is crucial for the accurate prediction of the wave dynamics and retains effects of the rotor inlet circumferential nonuniformity. It also still maintains the desirable properties of being easy to set-up and fast to run. The model has been validated against a experimentally validated full 3D unsteady Reynolds-averaged Navier–Stokes (URANS) solver. The loss model in the meanline model is calibrated by the full 3D RANS solver under the steady flow states. The unsteady turbine performance under different inlet pulsating flow conditions predicted by the model was compared with the results of the full 3D URANS solver. Good agreement between the two was obtained with a speed-up ratio of about 4 orders of magnitude (∼104) for the low-order model. The low-order model was then used to investigate the effect of different pulse wave amplitudes and frequencies on the turbine cycle averaged performance. For the cases tested, it was found that compared with quasi-steady performance, the unsteady effect of the pulsating flow has a relatively small impact on the cycle-averaged turbine power output and the cycle-averaged mass flow capacity, while it has a large influence on the cycle-averaged ideal power output and cycle-averaged efficiency. This is related to the wave dynamics inside the volute, and the detailed mechanisms responsible are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document