A Low-Order Model for Predicting Turbocharger Turbine Unsteady Performance

Author(s):  
Teng Cao ◽  
Liping Xu

In this paper, a low-order model for predicting performance of radial turbocharger turbines is presented. The model combines an unsteady quasi-three-dimensional (Q3D) computational fluid dynamics (CFD) method with multiple one-dimensional (1D) meanline impeller solvers. The new model preserves the critical volute geometry features, which is crucial for the accurate prediction of the wave dynamics and retains effects of the rotor inlet circumferential nonuniformity. It also still maintains the desirable properties of being easy to set-up and fast to run. The model has been validated against a experimentally validated full 3D unsteady Reynolds-averaged Navier–Stokes (URANS) solver. The loss model in the meanline model is calibrated by the full 3D RANS solver under the steady flow states. The unsteady turbine performance under different inlet pulsating flow conditions predicted by the model was compared with the results of the full 3D URANS solver. Good agreement between the two was obtained with a speed-up ratio of about 4 orders of magnitude (∼104) for the low-order model. The low-order model was then used to investigate the effect of different pulse wave amplitudes and frequencies on the turbine cycle averaged performance. For the cases tested, it was found that compared with quasi-steady performance, the unsteady effect of the pulsating flow has a relatively small impact on the cycle-averaged turbine power output and the cycle-averaged mass flow capacity, while it has a large influence on the cycle-averaged ideal power output and cycle-averaged efficiency. This is related to the wave dynamics inside the volute, and the detailed mechanisms responsible are discussed in this paper.

Author(s):  
Teng Cao ◽  
Liping Xu

In this paper, a low order model for predicting performance of radial turbocharger turbines is presented. The model combines an unsteady quasi-three dimensional CFD method with multiple one-dimensional meanline impeller solvers. The new model preserves the critical volute geometry features, which is crucial for the accurate prediction of the wave dynamics and retains effects of the rotor inlet circumferential non-uniformity. It also still maintains the desirable properties of being easy to set up and fast to run. The model has been validated against a experimentally validated full three-dimensional URANS solver. The loss model in the meanline model is calibrated by the full 3D RANS solver under the steady flow states. The unsteady turbine performance under different inlet pulsating flow conditions predicted by the model was compared with the results of the full 3D URANS solver. Good agreement between the two was obtained with a speed up ratio of about four orders of magnitude (∼104) for the low order model. The low order model was then used to investigate the effect of different pulse wave amplitudes and frequencies on the turbine cycle averaged performance. For the cases tested, it was found that compared with quasi-steady performance, the unsteady effect of the pulsating flow has a relatively small impact on the cycle averaged turbine power output and the cycle averaged mass flow capacity while it has a large influence on the cycle averaged ideal power output and cycle averaged efficiency. This is related to the wave dynamics inside the volute and the detailed mechanisms responsible are discussed in this paper.


2010 ◽  
Vol 4 (4) ◽  
pp. 657-661 ◽  
Author(s):  
Mohammed Zubair ◽  
Vizy Nazira Riazuddin ◽  
Mohammed Zulkifly Abdullah ◽  
Rushdan Ismail ◽  
Ibrahim Lutfi Shuaib ◽  
...  

Abstract Background: It is of clinical importance to examine the nasal cavity pre-operatively on surgical treatments. However, there is no simple and easy way to measure airflow in the nasal cavity. Objectives: Visualize the flow features inside the nasal cavity using computational fluid dynamics (CFD) method, and study the effect of different breathing rates on nasal function. Method: A three-dimensional nasal cavity model was reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes and continuity equations for steady airflow were solved numerically to examine the inspiratory nasal flow. Results: The flow resistance obtained varied from 0.026 to 0.124 Pa.s/mL at flow-rate from 7.5 L/min to 40 L/min. Flow rates by breathing had significant influence on airflow velocity and wall shear-stress in the vestibule and nasal valve region. Conclusion: Airflow simulations based on CFD is most useful for better understanding of flow phenomenon inside the nasal cavity.


2007 ◽  
Author(s):  
Yutaka Masuyama ◽  
Yusuke Tahara ◽  
Toichi Fukasawa ◽  
Naotoshi Maeda

Database of full-scale three-dimensional sail shapes are presented with the aerodynamic coefficients for the upwind condition of IMS type sails. Three-dimensional shape data are used for the input of numerical calculations and the results are compared with the measured sail performance. The sail shapes and performance are measured using a sail dynamometer boat Fujin. The Fujin is a 34-foot LOA boat, in which load cells and charge coupled devices (CCD) cameras are installed to measure the sail forces and shapes simultaneously. The sailing conditions of the boat, such as boat speed, heel angle, wind speed, wind angle, and so on, are also measured. The tested sail configurations are as follows: mainsail with 130% jib, mainsail with 75% jib and mainsail alone. Sail shapes are measured at several height positions. The measured shape parameters are chord length, maximum draft, maximum draft position, entry angle at the luff and exit angle at the leech. From these parameters three-dimensional coordinates of the sails are calculated by interpolation. These three-dimensional coordinates are tabulated with the aerodynamic coefficients. Numerical calculations are performed using the measured sail shapes. The calculation methods are of two types; Reynolds-averaged Navier-Stokes (RANS)-based CFD and vortex lattice methods (VLM). A multi-block RANS-based CFD method was developed by one of the authors and is capable of predicting viscous flows and aerodynamic forces for complicated sail configuration for upwind as well as downwind conditions. Important features of the numerical method are summarized as follows: a Finite- Analytic scheme to discretize transport equations, a PISO type velocity-pressure coupling scheme, multi-block domain decomposition capability, and several choices of turbulence models depending on flows of interest. An automatic grid generation scheme is also included. Another calculation method, the vortex lattice method is also adopted. In this case, step-by-step calculations are conducted to attain the steady state of the sail in steady wind. Wake vortices are generated step-by-step, which flow in the direction of the local velocity vector. These calculated sail forces are compared with the measured one, and the validity of the numerical method is studied. The sail shape database and comparison with numerical calculations will provide a good benchmark for the sail performance analysis of the upwind condition of IMS type sails.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3350 ◽  
Author(s):  
Guoping Huang ◽  
Xin Xiang ◽  
Chen Xia ◽  
Weiyu Lu ◽  
Lei Li

The reduction in specific fuel consumption (SFC) is crucial for small/mid-size cost-controllable aircraft, which is very conducive to reducing cost and carbon dioxide emissions. To decrease the SFC, increasing the bypass ratio (BPR) is an important way. Conventional high-BPR engines have several limitations, especially the conflicting spool-speed requirements of a fan and a low-pressure turbine. This research proposes an air-driven fan with a tip turbine (ADFTT) as a potential device for a high-bypass propulsion system. Moreover, a possible application of this ADFTT is introduced. Thermodynamic analysis results show that an ADFTT can improve thrust from a prototype turbofan. As a demonstration, we selected a typical small-thrust turbofan as the prototype and applied the ADFTT concept to improve this model. Three-dimensional flow fields were numerically simulated through a Reynolds averaged Navier-Stokes (RANS)-based computational fluid dynamics (CFD) method. The performance of this ADFTT has the possibility of amplifying the BPR more than four times and increasing the thrust by approximately 84% in comparison with the prototype turbofan.


SIMULATION ◽  
2019 ◽  
Vol 95 (12) ◽  
pp. 1229-1238 ◽  
Author(s):  
Yunhao Li ◽  
Juncheng Jiang ◽  
Yuan Yu ◽  
Qingwu Zhang

A three-dimensional computational fluid dynamics simulation model resolved by the unsteady Reynolds-Averaged Navier–Stokes equations was developed to predict hydrogen dispersion in an indoor environment. The effect of the height of the crossbeam (Hc) on hydrogen dispersion and distribution behaviors in a four-car garage was numerically investigated under fully confined and natural ventilation conditions. For the fully confined condition, the garage was almost completely filled with a flammable hydrogen cloud at t=600 s. In addition, the volumetric ratio of the flammable region, thickness of the hydrogen stratification, and hydrogen mole fraction all increased as Hc increased. When two symmetric ventilation openings were set up, the volumetric ratio of the flammable region decreased by 50% at t=600 s. Moreover, Hc had evident influence on the vertical distribution of hydrogen mole fraction. In addition, there existed little explosion hazard under the height of 1.6 m. The results show that Hc was a non-negligible factor for the safety design of hydrogen in the garage and Hc=0.12 m was the optimal height of the crossbeam. Furthermore, the ventilation system in the present study cannot completely eliminate the risk of hydrogen explosion. The present risk assessment results can be useful to analyze safety issues in automotive applications of hydrogen.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


2017 ◽  
Vol 819 ◽  
pp. 285-310 ◽  
Author(s):  
Nicolas Périnet ◽  
Pablo Gutiérrez ◽  
Héctor Urra ◽  
Nicolás Mujica ◽  
Leonardo Gordillo

Wave patterns in the Faraday instability have been studied for decades. Besides the rich wave dynamics observed at the interface, Faraday waves hide elusive flow patterns in the bulk – streaming patterns – which have not been studied experimentally. The streaming patterns are responsible for a net circulation in the flow, which is reminiscent of the circulation in convection cells. In this article, we analyse these streaming flows by conducting experiments in a Faraday-wave set-up using particle image velocimetry. To visualise the flows, we perform stroboscopic measurements to both generate trajectory maps and probe the streaming velocity field. We identify three types of patterns and experimentally show that identical Faraday waves can mask streaming patterns that are qualitatively very different. Next, we consider a three-dimensional model for streaming flows in quasi-inviscid fluids, whose key is the complex coupling occurring at all of the viscous boundary layers. This coupling yields modified boundary conditions in a three-dimensional Navier–Stokes formulation of the streaming flow. Numerical simulations based on this framework show reasonably good agreement, both qualitative and quantitative, with the velocity fields of our experiments. The model highlights the relevance of three-dimensional effects in the streaming patterns. Our simulations also reveal that the variety of streaming patterns is deeply linked to the boundary condition at the top interface, which may be strongly affected by the presence of contaminants.


2011 ◽  
Vol 55-57 ◽  
pp. 343-347 ◽  
Author(s):  
Yi Gang Luan ◽  
Hai Ou Sun

In this article, computational fluid dynamics(CFD) method is used to predict the effect of blade numbers on the pressure drop of axial cyclone separators. A three-dimensional model is built to acquire the resistance of axial cyclone separators with different blade numbers. The flow field inside cyclone separators is calculated using 3D Reynolds-averaged Navier-Stokes equations. And turbulence model is used to simulate the Reynold stress. Also pressure drop of cyclone separators with different blade numbers is expressed as a function of different inlet velocities. At the same inlet velocity with increasing the blade numbers, pressure drops of cyclones reduce greatly. And changing the blade number of cyclone separator is an effective method to improve its resistance performance.


2011 ◽  
Vol 52-54 ◽  
pp. 267-272 ◽  
Author(s):  
Yong Hua Zhang ◽  
Jian Hui He ◽  
Guo Qing Zhang

This paper aims to understand influence of the obliquity of fin ray on its motion performance. An environment-friendly propulsion system mimicking undulating fins of stingray had been built. Investigations were presented by using three-dimensional unsteady Computational Fluid Dynamics (CFD) method. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was used to compute the unsteady flow around the fin through twenty complete cycles. The pressure distribution on fin surface was computed and integrated to provide fin forces which were decomposed into lift and thrust. Vortex contour maps of the fin with different obliquity of fin ray were displayed and compared. Finally, we draw a conclusion that the generated propulsion force of the biomimetic propulsor is gradually increase with the obliquity of the fin ray from 0 degree till a certain angle and then gradually decrease with the obliquity of the fin ray from the certain angle till 90 degree. The results provide valuable information for the optimization of robotic underwater undulating propulsor design.


2015 ◽  
Author(s):  
Zhou Qinghua ◽  
Li Xiaoling ◽  
Yang Qi ◽  
B. Qin

The coupling effects of tank sloshing on the ship motion and wave-induced loads of a very large ethane carrier (VLEC) with 83000m3 loading capacity and four membrane tanks are systematically investigated. The ship motion equation coupled with tank sloshing is calculated in the frequency domain based on three dimensional linear potential flow theory. The added mass, damping coefficient and restoring stiffness correction due to tank sloshing are considered. The response amplitude operators (RAO) of ship motion and sectional loads with and without considering tank sloshing are obtained. Taking ship motion dynamic response as excitation input condition, the three dimensional fluid sloshing movement behavior and sloshing-induced impact pressure are simulated by the computational fluid dynamics (CFD) method. The Renormalized Group (RNG) k-ε turbulence model is selected and used with the Reynolds-Averaged Navier-Stokes (RANS) equation; the volume of fluid method is adopted to predict the free surface elevation. The results provide valuable references for the overall design and structural safety assessment of VLEC.


Sign in / Sign up

Export Citation Format

Share Document