Anti-Cancer platinum drug adducts with AMP: novel direct proton and platinum-195 and NMR evidence for slowly interconverting "head-to-tail" rotamers. Potential role of amine ligand bulk and NH groups in guanine selectivity and anti-cancer activity

1986 ◽  
Vol 108 (21) ◽  
pp. 6785-6793 ◽  
Author(s):  
Michael D. Reily ◽  
Luigi G. Marzilli
Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1138
Author(s):  
Zhe Zhang ◽  
Jiayan Shi ◽  
Edouard C. Nice ◽  
Canhua Huang ◽  
Zheng Shi

Flavonoids are considered as pleiotropic, safe, and readily obtainable molecules. A large number of recent studies have proposed that flavonoids have potential in the treatment of tumors by the modulation of autophagy. In many cases, flavonoids suppress cancer by stimulating excessive autophagy or impairing autophagy flux especially in apoptosis-resistant cancer cells. However, the anti-cancer activity of flavonoids may be attenuated due to the simultaneous induction of protective autophagy. Notably, flavonoids-triggered protective autophagy is becoming a trend for preventing cancer in the clinical setting or for protecting patients from conventional therapeutic side effects in normal tissues. In this review, focusing on the underlying autophagic mechanisms of flavonoids, we hope to provide a new perspective for clinical application of flavonoids in cancer therapy. In addition, we highlight new research ideas for the development of new dosage forms of flavonoids to improve their various pharmacological effects, establishing flavonoids as ideal candidates for cancer prevention and therapy in the clinic.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
V. V. Buheruk ◽  
O. B. Voloshyna ◽  
L. I. Kovalchuk ◽  
I. V. Balashova ◽  
O. V. Naidionova

The aim of this review is to analyze and summarize the existing evidence regarding the possibilities of using acetylsalicylic acid (ASA) and other non-steroidal anti-inflammatory drugs (NSAIDs) to reduce cancer risk. Conclusions. Chronic inflammation facilitates the onset and progress of tumour growth. Anti-cancer properties of acetylsalicylic acid and other non-steroidal anti-inflammatory drugs are mediated via cyclooxygenase COX-dependent mechanisms, as well as other tumorigenic pathways. Current systematic review addresses potential role of ASA and other NSAIDs in reduction of cancer risk for the following localizations: head and neck, lungs, gastrointestinal tract, breast, ovaries, prostate, and skin. The role of ASA in primary prevention of colorectal cancer in specific populations is presented in 2016 U. S. Preventive Services Task Force guidelines. Studies indicate heterogeneous protective potential of ASA against different cancer types, depending on studied population, duration of intake and dose. Influence of non-aspirin NSAIDs on cancer morbidity and mortality is more controversial.


Author(s):  
Haroon Khan ◽  
Fabiana Labanca ◽  
Hammad Ullah ◽  
Yaseen Hussain ◽  
Nikolay T. Tzvetkov ◽  
...  

AbstractOver the years, the attention towards the role of phytochemicals in dietary natural products in reducing the risk of developing cancer is rising. Cancer is the second primary cause of mortality worldwide. The current therapeutic options for cancer treatment are surgical excision, immunotherapy, chemotherapy, and radiotherapy. Unfortunately, in case of metastases or chemoresistance, the treatment options become very limited. Despite the advances in medical and pharmaceutical sciences, the impact of available treatments on survival is not satisfactory. Recently, natural products are a great deal of interest as potential anti-cancer agents. Among them, phenolic compounds have gained a great deal of interest, thanks to their anti-cancer activity. The present review focuses on the suppression of cancer by targeting BRCA gene expression using dietary polyphenols, as well as the clinical aspects of polyphenolic agents in cancer therapy. They regulate specific key processes involved in cancer progression and modulate the expression of oncogenic proteins, like p27, p21, and p53, which may lead to apoptosis, cell cycle arrest, inhibition of cell proliferation, and, consequently, cancer suppression. Thus, one of the mechanisms underlying the anti-cancer activity of phenolics involves the regulation of tumor suppressor genes. Among them, the BRCA genes, with the two forms (BRCA-1 and BRCA-2), play a pivotal role in cancer protection and prevention. BRCA germline mutations are associated with an increased risk of developing several types of cancers, including ovarian, breast, and prostate cancers. BRCA genes also play a key role in the sensitivity and response of cancer cells to specific pharmacological treatments. As the importance of BRCA-1 and BRCA-2 in reducing cancer invasiveness, repairing DNA damages, oncosoppression, and cell cycle checkpoint, their regulation by natural molecules has been examined.


2019 ◽  
Vol 11 (3) ◽  
pp. 687-696 ◽  
Author(s):  
Javaria Munir ◽  
Mihye Lee ◽  
Seongho Ryu

ABSTRACT Exosomes are membrane-bound organelles generally secreted by eukaryotic cells that contain mRNAs, microRNAs, and/or proteins. However, recent studies have reported the isolation of these particles from foods such as lemon, ginger, and milk. Owing to their absorption by intestinal cells and further travel via the bloodstream, exosomes can reach distant organs and affect overall health in both infants and adults. The potential role of food-derived exosomes (FDEs) in alleviating diseases, as well as in modulating the gut microbiota has been shown, but the underlying mechanism is still unknown. Moreover, exosomes may provide biocompatible vehicles for the delivery of anti-cancer drugs, such as doxorubicin. Thus, exosomes may allow medical nutritionists and clinicians to develop safe and targeted therapies for the treatment of various pathologies. The present review introduces FDEs and their contents, highlights their role in disease and infant/adult health, and explores their potential use as therapeutic agents.


2009 ◽  
Vol 602 (2-3) ◽  
pp. 203-214 ◽  
Author(s):  
Bhumika Thati ◽  
Andy Noble ◽  
Bernadette S. Creaven ◽  
Maureen Walsh ◽  
Malachy McCann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document