Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery Nanoparticles Using Fluorescence Depolarization

2020 ◽  
Vol 142 (11) ◽  
pp. 5212-5220 ◽  
Author(s):  
Fang-Chu Lin ◽  
Jeffrey I. Zink
2013 ◽  
Vol 40 (10) ◽  
pp. 1014
Author(s):  
Xiao-Hong HAO ◽  
Cui-Miao ZHANG ◽  
Xiao-Long LIU ◽  
Xing-Jie LIANG ◽  
Guang JIA ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


2021 ◽  
pp. 150011
Author(s):  
Eva Benova ◽  
Virginie Hornebecq ◽  
Vladimír Zelenak ◽  
Veronika Huntosova ◽  
Miroslav Almasi ◽  
...  

2018 ◽  
Vol 6 (39) ◽  
pp. 6269-6277 ◽  
Author(s):  
Yaya Cheng ◽  
Xiangyu Jiao ◽  
Liang Zhao ◽  
Yang Liu ◽  
Fang Wang ◽  
...  

Inspired by aquaporins in nature, herein, a biomimetic free-blocking on-demand drug delivery system is proposed, which is constructed by controlling the wettability of the inner surface of nanochannels on mesoporous silica nanoparticles (MSNs).


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3321
Author(s):  
Etienne J. Slapak ◽  
Lily Kong ◽  
Mouad el Mandili ◽  
Rienk Nieuwland ◽  
Alexander Kros ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate of all cancers. This poor prognosis results from the lack of efficient systemic treatment regimens, demanding high-dose chemotherapy that causes severe side effects. To overcome dose-dependent toxicities, we explored the efficacy of targeted drug delivery using a protease-dependent drug-release system. To this end, we developed a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSN) functionalized with an avidin–biotin gatekeeper system containing a protease linker that is specifically cleaved by tumor cells. Bioinformatic analysis identified ADAM9 as a PDAC-enriched protease, and PDAC cell-derived conditioned medium efficiently cleaved protease linkers containing ADAM9 substrates. Cleavage was PDAC specific as conditioned medium from leukocytes was unable to cleave the ADAM9 substrate. Protease linker-functionalized MSNs were efficiently capped with avidin, and cap removal was confirmed to occur in the presence of PDAC cell-derived ADAM9. Subsequent treatment of PDAC cells in vitro with paclitaxel-loaded MSNs indeed showed high cytotoxicity, whereas no cell death was observed in white blood cell-derived cell lines, confirming efficacy of the nanoparticle-mediated drug delivery system. Taken together, this research introduces a novel ADAM9-responsive, protease-dependent, drug delivery system for PDAC as a promising tool to reduce the cytotoxicity of systemic chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document