Contact Angle and Surface Tension in the Celestite + Sodium Oleate Aqueous Solutions + Air System

2001 ◽  
Vol 46 (1) ◽  
pp. 107-109 ◽  
Author(s):  
F. Hernáinz ◽  
A. Caro
2009 ◽  
Vol 54 (2) ◽  
pp. 314-317 ◽  
Author(s):  
Francisco Hernáinz ◽  
Mónica Calero ◽  
Gabriel Blázquez ◽  
Antonio Caro

1938 ◽  
Vol 16a (11) ◽  
pp. 207-214 ◽  
Author(s):  
W. C. Fisher ◽  
C. A. Mackay

Surface tension measurements have been made on lauric acid at temperatures above its melting point, on aqueous solutions of butyric and lauric acids, and on methyl acetate and sodium oleate. The results for the solutions are compared with those calculated by means of a recent theory.


Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1337
Author(s):  
Xiangfeng Tian ◽  
Lemeng Wang ◽  
Pan Zhang ◽  
Dong Fu

The surface tension and viscosity values of N-methyldiethanolamine (MDEA) aqueous solutions promoted by tetramethylammonium arginate ([N1111][Arg]) were measured and modeled. The experimental temperatures were 303.2 to 323.2 K. The mass fractions of MDEA (wMDEA) and [N1111][Arg] (w[N1111][Arg]) were 0.300 to 0.500 and 0.025 to 0.075, respectively. The measured surface tension and viscosity values were satisfactorily fitted to thermodynamic models. With the aid of experimentally viscosity data, the activation energy (Ea) and H2S diffusion coefficient (DH2S) of MDEA-[N1111][Arg] aqueous solution were deduced. The surface entropy and surface enthalpy of the solutions were calculated using the fitted model of the surface tension. The quantitative relationship between the calculated values (surface tension, surface entropy, surface enthalpy, viscosity, activation energy, and H2S diffusion coefficient) and the operation conditions (mass fraction and temperature) was demonstrated.


2005 ◽  
Vol 473-474 ◽  
pp. 429-434 ◽  
Author(s):  
Olga Verezub ◽  
György Kaptay ◽  
Tomiharu Matsushita ◽  
Kusuhiro Mukai

Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.


Author(s):  
Anpalaki J. Ragavan ◽  
Cahit A. Evrensel ◽  
Peter Krumpe

Altered surface and viscoelastic material properties of mucus during respiratory diseases have a strong influence on its clearance by cilia and cough. Combined effects of the surface properties (contact angle and surface tension) and storage modulus with relatively unchanged viscosity on displacement of the simulated mucus aliquot during simulated cough through a model adult human trachea is investigated. For the mucus simulants used in this study contact angle and surface tension increase significantly as storage modulus increase while viscosity remains practically unchanged. Displacement of mucus simulant aliquots increased significantly with increasing storage modulus (and contact angle) at a given cough velocity in the range between 5 meters/second (m/s) and 30 m/s with duration 0.3 s. Results suggest that the interactive effects of elasticity and surface properties may help facilitate mucus displacement at low cough velocities.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Zhou ◽  
Han Qiu ◽  
Qi Zhang ◽  
Mao Xu ◽  
Jiayuan Wang ◽  
...  

Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.


Sign in / Sign up

Export Citation Format

Share Document