High-Affinity Monoclonal Antibodies for Detection of the Microbial Metabolite, 2-Methylisoborneol

2003 ◽  
Vol 51 (13) ◽  
pp. 3731-3736 ◽  
Author(s):  
Leslie C. Plhak ◽  
Eun Sung Park
2017 ◽  
Vol 14 (4) ◽  
pp. 393-402 ◽  
Author(s):  
Rajaraman Krishnan ◽  
Franz Hefti ◽  
Haim Tsubery ◽  
Michal Lulu ◽  
Ming Proschitsky ◽  
...  

Therapeutic strategies that target pathways of protein misfolding and the toxicity of intermediates along these pathways are mainly at discovery and early development stages, with the exception of monoclonal antibodies that have mainly failed to produce convincing clinical benefits in late stage trials. The clinical failures represent potentially critical lessons for future neurodegenerative disease drug development. More effective drugs may be achieved by pursuing the following two strategies. First, conformational targeting of aggregates of misfolded proteins, rather than less specific binding that includes monomer subunits, which vastly outnumber the toxic targets. Second, since neurodegenerative diseases frequently include more than one potential protein pathology, generic targeting of aggregates by shape might also be a crucial feature of a drug candidate. Incorporating both of these critical features into a viable drug candidate along with high affinity binding has not been achieved with small molecule approaches or with antibody fragments. Monoclonal antibodies developed so far are not broadly acting through conformational recognition. Using GAIM (General Amyloid Interaction Motif) represents a novel approach that incorporates high affinity conformational recognition for multiple protein assemblies, as well as recognition of an array of assemblies along the misfolding pathway between oligomers and fibers. A GAIM-Ig fusion, NPT088, is nearing clinical testing.


Blood ◽  
1990 ◽  
Vol 75 (4) ◽  
pp. 874-880 ◽  
Author(s):  
AD D'Andrea ◽  
PJ Szklut ◽  
HF Lodish ◽  
EM Alderman

Abstract We have generated four high affinity monoclonal antibodies (MoAbs) to recombinant human erythropoietin (EPO). All four MoAbs immunoprecipitate radioiodinated native EPO, and the concentrations of MoAbs required for maximum binding range from 10 nmol/L to 100 nmol/L. Two MoAbs, designated Group I MoAbs, bind to an epitope within the N- terminal 20 amino acids of EPO and also immunoprecipitate sodium dodecyl sulfate (SDS)-denatured EPO. Two other MoAbs (Group II MoAbs) do not immunoprecipitate SDS-denatured EPO and do not bind to any of the eight endo C fragments of EPO. We first used murine erythroleukemia (MEL) cells to test the MoAbs for inhibition of EPO-receptor binding. MEL cells, although unresponsive to EPO, express 760 high affinity receptors for EPO per cell (Kd = 0.24 nmol/L). To assay our MoAbs, MEL cells were grown as monolayers on fibronectin-coated Petri dishes and incubated at 4 degrees C with radioiodinated EPO. Group I MoAbs do not inhibit binding of radioiodinated EPO to the MEL EPO-receptor, but Group II MoAbs do inhibit binding in a dose-dependent manner. We next examined the neutralization of EPO bioactivity by our MoAbs, using EPO- dependent cell line. Only Group II MoAbs inhibit a newly developed EPO- dependent cell growth, demonstrating that inhibition of EPO-receptor binding correlates with neutralization of EPO bioactivity.


Nature ◽  
2008 ◽  
Vol 453 (7195) ◽  
pp. 667-671 ◽  
Author(s):  
Jens Wrammert ◽  
Kenneth Smith ◽  
Joe Miller ◽  
William A. Langley ◽  
Kenneth Kokko ◽  
...  

2015 ◽  
Vol 62 (3) ◽  
pp. 325-340 ◽  
Author(s):  
Chandresh Sharma ◽  
Anurag Sankhyan ◽  
Tarang Sharma ◽  
Naeem Khan ◽  
Susmita Chaudhuri ◽  
...  

Author(s):  
Manal M.E. Ahmed ◽  
Rafik Soliman ◽  
Jakeen Eljakee ◽  
Ahmed El-Sanousi ◽  
Haitham Amer ◽  
...  

Hybridomas that secreted antibodies against aflatoxin B1 for multiple uses were prepared using a unique immunization schedule. Aflatoxin B1-BSA conjugate was used for immunization of Balb/c mice. Spleen cells were harvested from the hyper immunized mice to be fused with myeloma cell line (P3NS1) using polyethylene glycol 3000, 50% concentration as a fusogenic agent. The produced hybridomas were selected using HAT selective medium that was replaced by complete HT medium. From the 10thday after fusion, wells that contain colonies of hybridomas covering 30% or greater of the wells surface were screened for production of monoclonal antibodies against aflatoxin B1 using ELISA. 21 hybridomas were found to be reactive to aflatoxin B1. All were found to belong to IgG2aisotype except one was found to belong to IgM isotype. The prepared monoclonal antibodies and their application to immunoassays represents a useful and rapid quantitative measurement with high affinity and low detection limits in order to purify environmentally occurring levels of this carcinogen specially in areas at high risk for liver cancer.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Robert C. Kauffman ◽  
Oluwaseyi Adekunle ◽  
Hanyi Yu ◽  
Alice Cho ◽  
Lindsay E. Nyhoff ◽  
...  

ABSTRACT Vibrio cholerae causes the severe diarrheal disease cholera. Clinical disease and current oral cholera vaccines generate antibody responses associated with protection. Immunity is thought to be largely mediated by lipopolysaccharide (LPS)-specific antibodies, primarily targeting the O-antigen. However, the properties and protective mechanism of functionally relevant antibodies have not been well defined. We previously reported on the early B cell response to cholera in a cohort of Bangladeshi patients, from which we characterized a panel of human monoclonal antibodies (MAbs) isolated from acutely induced plasmablasts. All antibodies in that previous study were expressed in an IgG1 backbone irrespective of their original isotype. To clearly determine the impact of affinity, immunoglobulin isotype and subclass on the functional properties of these MAbs, we re-engineered a subset of low- and high-affinity antibodies in different isotype and subclass immunoglobulin backbones and characterized the impact of these changes on binding, vibriocidal, agglutination, and motility inhibition activity. While the high-affinity antibodies bound similarly to O-antigen, irrespective of isotype, the low-affinity antibodies displayed significant avidity differences. Interestingly, despite exhibiting lower binding properties, variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies, suggesting that how the MAb binds to the O-antigen may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition. IMPORTANCE Immunity to the severe diarrheal disease cholera is largely mediated by lipopolysaccharide (LPS)-specific antibodies. However, the properties and protective mechanisms of functionally relevant antibodies have not been well defined. Here, we have engineered low and high-affinity LPS-specific antibodies in different immunoglobulin backbones in order to assess the impact of affinity, immunoglobulin isotype, and subclass on binding, vibriocidal, agglutination, and motility inhibition functional properties. Importantly, we found that affinity did not directly dictate functional potency since variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies. This suggests that how the antibody binds sterically may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.


Sign in / Sign up

Export Citation Format

Share Document