Femtosecond Pump−Probe Transient Absorption Study of the Photolysis of [Cp‘Mo(CO)3]2(Cp‘ = η5-C5H4CH3):  Role of Translational and Rotational Diffusion in the Radical Cage Effect

2007 ◽  
Vol 111 (25) ◽  
pp. 5353-5360 ◽  
Author(s):  
Alan B. Oelkers ◽  
Lawrence F. Scatena ◽  
David R. Tyler
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivan Ramirez ◽  
Alberto Privitera ◽  
Safakath Karuthedath ◽  
Anna Jungbluth ◽  
Johannes Benduhn ◽  
...  

AbstractStability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices.


2020 ◽  
Vol 8 (42) ◽  
pp. 14834-14844
Author(s):  
Piotr Piatkowski ◽  
Sofia Masi ◽  
Pavel Galar ◽  
Mario Gutiérrez ◽  
Thi Tuyen Ngo ◽  
...  

Charge-carrier transfer (CT) from the perovskite host to PbS QDs were studied using fs-transient absorption and THz techniques. The CT rate constants increase with the size of QDs due to a change in the position of valence and conduction bands in PbS QDs.


2018 ◽  
Vol 98 (24) ◽  
Author(s):  
O. Abdurazakov ◽  
D. Nevola ◽  
A. Rustagi ◽  
J. K. Freericks ◽  
D. B. Dougherty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document