Oxygen Reduction Contributing to Charge Transfer during the First Discharge of the CeO2–Bi2Fe4O9–Li Battery: In Situ X-ray Diffraction and X-ray Absorption Near-Edge Structure Investigation

2014 ◽  
Vol 118 (27) ◽  
pp. 14711-14722 ◽  
Author(s):  
Min Liu ◽  
Chuan Lin ◽  
Yueliang Gu ◽  
Tieying Yang ◽  
Zhengliang Gong ◽  
...  
1990 ◽  
Vol 210 ◽  
Author(s):  
C. Lévy-Clèment ◽  
C. Mondoloni ◽  
C. Godart ◽  
R. Cortès

AbstractThis paper presents applications of in situ X-ray diffraction and absorption techniques to the study of H+/MnO2 alkaline batteries. The two complementary in situ techniques are described. Investigation of the electrochemical insertion and deinsertion of H+ has been made through its influence on the evolution of the crystallographic structure of γ-MnO2, while investigation of the transfer of e has been undertaken through the variation of the oxidation state of the manganese during the discharging and charging process of a battery. New insights in the understanding of the mechanisms of proton insertion and charge transfer into γ-MnO2 are discussed.


2017 ◽  
Vol 19 (4) ◽  
pp. 3358-3365 ◽  
Author(s):  
Han-Yi Chen ◽  
Jochen Friedl ◽  
Chun-Jern Pan ◽  
Ali Haider ◽  
Rami Al-Oweini ◽  
...  

The electron transfer of Na6[V10O28] was investigated byin situV K-edge X-ray absorption spectroscopy and chronoamperometric experiments for the first time.


2015 ◽  
Vol 112 (52) ◽  
pp. 15803-15808 ◽  
Author(s):  
Ofer Hirsch ◽  
Kristina O. Kvashnina ◽  
Li Luo ◽  
Martin J. Süess ◽  
Pieter Glatzel ◽  
...  

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure–functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.


2007 ◽  
Vol 561-565 ◽  
pp. 1225-1228
Author(s):  
Takayuki Ohba

With the highest brilliance synchrotron radiation X-ray (SPring-8) and TEM observations, Cu oxides ranged 2-nm to 10-nm in thickness formed on sputtered Cu has been evaluated. For the plasma-assisted Cu oxide, weak Cu2O and/or CuO X-ray diffraction pattern is observed, while no diffraction pattern in native and thermally (170°C) grown oxides. Those native and thermal oxides show Cu2O coordination observed by XANES (X-ray Absorption Near Edge Structure) method. This suggests that Cu oxide formed at low temperatures consists of stoichiometric Cu2O in an amorphous structure. According to the Fowler-Nordheim (F-N) current emission model, the current emission taking place at Cu2O decreases with increasing of the oxide thickness and its mean barrier height (φB) in the MIM band structure. In case of current density at 106A/cm2 of 1V, it is estimated that the allowable thickness of Cu oxides is approximately 1.5-nm at 1 eV of barrier height.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2004 ◽  
Vol 59 (6) ◽  
pp. 901-904 ◽  
Author(s):  
Zhenlin Liu ◽  
Katsumi Handa ◽  
Kazuki Kaibuchi ◽  
Yoichi Tanaka ◽  
Jun Kawai

Sign in / Sign up

Export Citation Format

Share Document