Phase Behavior of Styrene−Isoprene Diblock Copolymers in Strongly Selective Solvents

2002 ◽  
Vol 35 (3) ◽  
pp. 841-849 ◽  
Author(s):  
Chiajen Lai ◽  
William B. Russel ◽  
Richard A. Register
2021 ◽  
pp. 1035-1040
Author(s):  
Bo Zhang ◽  
Caini Zheng ◽  
Michael B. Sims ◽  
Frank S. Bates ◽  
Timothy P. Lodge

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1027 ◽  
Author(s):  
Alexey A. Gavrilov ◽  
Alexander V. Chertovich ◽  
Igor I. Potemkin

In this work, we investigated the phase behavior of melts of block-copolymers with one charged block by means of dissipative particle dynamics with explicit electrostatic interactions. We assumed that all the Flory–Huggins χ parameters were equal to 0. We showed that the charge- correlation attraction solely can cause microphase separation with a long-range order; a phase diagram was constructed by varying the volume fraction of the uncharged block and the electrostatic interaction parameter λ (dimensionless Bjerrum length). The obtained phase diagram was compared to the phase diagram of “equivalent” neutral diblock-copolymers with the non-zero χ-parameter between the beads of different blocks. The neutral copolymers were constructed by grafting the counterions to the corresponding co-ions of the charged block with further switching off the electrostatic interactions. Surprisingly, the differences between these phase diagrams are rather subtle; the same phases in the same order are observed, and the positions of the order-disorder transition ODT points are similar if the λ-parameter is considered as an “effective” χ-parameter. Next, we studied the position of the ODT for lamellar structure depending on the chain length N. It turned out that while for the uncharged diblock copolymer the product χcrN was almost independent of N, for the diblock copolymers with one charged block we observed a significant increase in λcrN upon increasing N. This can be attributed to the fact that the counterion entropy prevents the formation of ordered structures, and its influence is more pronounced for longer chains since they undergo the transition to ordered structures at smaller values of λ, when the electrostatic energy becomes comparable to kbT. This was supported by studying the ODT in diblock-copolymers with charged blocks and counterions cross-linked to the charged monomer units. The ODT for such systems was observed at significantly lower values of λ, with the difference being more pronounced at longer chain lengths N. The fact that the microphase separation is observed even at zero Flory–Huggins parameter can be used for the creation of “high-χ” copolymers: The incorporation of charged groups (for example, ionic liquids) can significantly increase the segregation strength. The diffusion of counterions in the obtained ordered structures was studied and compared to the case of a system with the same number of charged groups but a homogeneous structure; the diffusion coefficient along the lamellar plane was found to be higher than in any direction in the homogeneous structure.


1994 ◽  
Vol 27 (23) ◽  
pp. 6922-6935 ◽  
Author(s):  
Stephan Foerster ◽  
Ashish K. Khandpur ◽  
Jin Zhao ◽  
Frank S. Bates ◽  
Ian W. Hamley ◽  
...  

Soft Matter ◽  
2020 ◽  
Vol 16 (26) ◽  
pp. 6056-6062 ◽  
Author(s):  
Xianggui Ye ◽  
Bamin Khomami

Large-scale dissipative particle dynamics (DPD) simulations have been performed to investigate the self-assembly of over 20 000 linear diblock copolymer chains in a selective solvent.


2019 ◽  
Vol 10 (6) ◽  
pp. 751-765 ◽  
Author(s):  
Alyssa W. May ◽  
Zhangxing Shi ◽  
Dilanji B. Wijayasekara ◽  
Douglas L. Gin ◽  
Travis S. Bailey

A series of ATRP-synthesized poly(IL) diblock copolymers exhibit morphological phase behavior with shifted phase boundaries and alkyl substituent dependent segregation.


1999 ◽  
Vol 77 (8) ◽  
pp. 1311-1326 ◽  
Author(s):  
Neil S Cameron ◽  
Muriel K Corbierre ◽  
Adi Eisenberg

Asymmetric amphiphilic diblock copolymers self-assemble in selective solvents. Since 1995, when we first reported the systematic preparation of a sequence of various "crew-cut" aggregate morphologies from this class of copolymer in solution (1), we have identified a vast array of structures and have begun a detailed investigation of the thermodynamic and kinetic parameters that induce morphogenesis. Not only spheres, rods, bilayer and bicontinuous architectures, as well as inverted structures are observed, but also a selection of mixed, combined and much more complex aggregates is documented. All of these aggregates have a phase-separated insoluble core and a crew-cut soluble corona. Thus, all parameters that permit selective modification of the component of either phase or of the interface provide a window for morphological control. By carefully adjusting the polymer chain environment, it has been possible to develop a systematic understanding of morphogenic parameters, which include, among others, polymer composition, common solvent, initial concentration, temperature, type and concentration of added ions, method of preparation, and added homopolymer. To date, more than 30 publications have appeared in the literature from our group alone on this subject. One of the problems inherent with such a complicated system is the taxonomy or classification: which morphologies correspond to equilibrium positions and which are intermediate or trapped? An attempt at a logical presentation of the observed aggregates is given, preceded by a qualitative discussion of the thermodynamic framework for this system. Where possible, the transitions between morphologies are explained in the context of the thermodynamic parameters. Finally, parallels are drawn between the copolymer aggregates and biological architectures.Key words: crew-cut, morphology, block copolymer, self-assembly, amphiphile.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoyu Li ◽  
Piotr J. Wolanin ◽  
Liam R. MacFarlane ◽  
Robert L. Harniman ◽  
Jieshu Qian ◽  
...  

Abstract Micelles formed by the self-assembly of block copolymers in selective solvents have attracted widespread attention and have uses in a wide variety of fields, whereas applications based on their electronic properties are virtually unexplored. Herein we describe studies of solution-processable, low-dispersity, electroactive fibre-like micelles of controlled length from π-conjugated diblock copolymers containing a crystalline regioregular poly(3-hexylthiophene) core and a solubilizing, amorphous regiosymmetric poly(3-hexylthiophene) or polystyrene corona. Tunnelling atomic force microscopy measurements demonstrate that the individual fibres exhibit appreciable conductivity. The fibres were subsequently incorporated as the active layer in field-effect transistors. The resulting charge carrier mobility strongly depends on both the degree of polymerization of the core-forming block and the fibre length, and is independent of corona composition. The use of uniform, colloidally stable electroactive fibre-like micelles based on common π-conjugated block copolymers highlights their significant potential to provide fundamental insight into charge carrier processes in devices, and to enable future electronic applications.


Polymer ◽  
2004 ◽  
Vol 45 (6) ◽  
pp. 1951-1957 ◽  
Author(s):  
Elizabeth A Minich ◽  
Andrew P Nowak ◽  
Timothy J Deming ◽  
Darrin J Pochan

Sign in / Sign up

Export Citation Format

Share Document