Single Monomer for Multiple Tasks: Polymerization Induced Self-Assembly, Functionalization and Cross-Linking, and Nanoparticle Loading

2014 ◽  
Vol 3 (12) ◽  
pp. 1220-1224 ◽  
Author(s):  
Wei Zhou ◽  
Qingwu Qu ◽  
Weijun Yu ◽  
Zesheng An
RSC Advances ◽  
2014 ◽  
Vol 4 (46) ◽  
pp. 24369-24376 ◽  
Author(s):  
Jiemin Zhao ◽  
Xiaoping Wang ◽  
Yanshen Kuang ◽  
Yufeng Zhang ◽  
Xiaowen Shi ◽  
...  

Alginate (ALG)–lysozyme (LZ) beads were fabricated by a cross-linking process. Negatively charged ALG and positively charged LZ were alternately deposited on the positively charged ALG–LZ beads via a layer-by-layer (LBL) self-assembly technique.


2017 ◽  
Vol 50 (4) ◽  
pp. 1482-1493 ◽  
Author(s):  
Sarah J. Byard ◽  
Mark Williams ◽  
Beulah E. McKenzie ◽  
Adam Blanazs ◽  
Steven P. Armes

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2867
Author(s):  
Myoung Jun Park ◽  
Grace M. Nisola ◽  
Dong Han Seo ◽  
Chen Wang ◽  
Sherub Phuntsho ◽  
...  

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.


Author(s):  
Pu Xiao-Long ◽  
yang xuechun ◽  
Shan-Shan Liang ◽  
Wenzhong Wang ◽  
Jing-Tai Zhao ◽  
...  

The N-modified carbon dots/graphitic carbon nitride (NCDs/g-C3N4) aerogel was successfully prepared by simple electrostatic self-assembly of NCDs and g-C3N4 nanosheets without any harmful solvents or cross-linking agents. The prepared aerogel...


2020 ◽  
Vol 11 (26) ◽  
pp. 4335-4343 ◽  
Author(s):  
Jongmin Park ◽  
Nam Young Ahn ◽  
Myungeun Seo

Copolymerizing a cross-linker in the PISA process spontaneously produces branched core cross-linked block polymer micelles.


2016 ◽  
Vol 7 (29) ◽  
pp. 4761-4770 ◽  
Author(s):  
Jianbing Huang ◽  
Hanjun Zhu ◽  
Hui Liang ◽  
Jiang Lu

Salicylaldehyde-functionalized nano-objects are prepared via RAFT-mediated polymerization-induced self-assembly. Their simultaneous stabilization and fluorescence modification can be achieved by one-step reaction.


2016 ◽  
Vol 113 (47) ◽  
pp. 13384-13389 ◽  
Author(s):  
Gad Armony ◽  
Etai Jacob ◽  
Toot Moran ◽  
Yishai Levin ◽  
Tevie Mehlman ◽  
...  

Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins.


2014 ◽  
Vol 289 (14) ◽  
pp. 10057-10068 ◽  
Author(s):  
Sean E. Reichheld ◽  
Lisa D. Muiznieks ◽  
Richard Stahl ◽  
Karen Simonetti ◽  
Simon Sharpe ◽  
...  

2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


Sign in / Sign up

Export Citation Format

Share Document