Local Structure of Ba1–xSrxTiO3and BaTi1–yZryO3Nanocrystals Probed by X-ray Absorption and X-ray Total Scattering

ACS Nano ◽  
2013 ◽  
Vol 7 (12) ◽  
pp. 11435-11444 ◽  
Author(s):  
Federico A. Rabuffetti ◽  
Richard L. Brutchey
2009 ◽  
Vol 42 (5) ◽  
pp. 867-877 ◽  
Author(s):  
V. Krayzman ◽  
I. Levin ◽  
J. C. Woicik ◽  
Th. Proffen ◽  
T. A. Vanderah ◽  
...  

Reverse Monte Carlo (RMC) refinements of local structure using a simultaneous fit of X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) data were developed to incorporate an explicit treatment of both single- and multiple-scattering contributions to EXAFS. The refinement algorithm, implemented as an extension to the public domain computer softwareRMCProfile, enables accurate modeling of EXAFS over distances encompassing several coordination shells around the absorbing species. The approach was first tested on Ni, which exhibits extensive multiple scattering in EXAFS, and then applied to perovskite-like SrAl1/2Nb1/2O3. This compound crystallizes with a cubic double-perovskite structure but presents a challenge for local-structure determination using a total pair-distribution function (PDF) alone because of overlapping peaks of the constituent partial PDFs (e.g.Al—O and Nb—O or Sr—O and O—O). The results obtained here suggest that the combined use of the total scattering and EXAFS data provides sufficient constraints for RMC refinements to recover fine details of local structure in complex perovskites. Among other results, it was found that the probability density distribution for Sr in SrAl1/2Nb1/2O3adoptsTdpoint-group symmetry for the Sr sites, determined by the ordered arrangement of Al and Nb, as opposed to a spherical distribution commonly assumed in traditional Rietveld refinements.


2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1315
Author(s):  
Takafumi Miyanaga

X-ray absorption fine structure (XAFS) is a powerful technique used to analyze a local electronic structure, local atomic structure, and structural dynamics. In this review, I present examples of XAFS that apply to the local structure and dynamics of functional materials: (1) structure phase transition in perovskite PbTiO3 and magnetic FeRhPd alloys; (2) nano-scaled fluctuations related to their magnetic properties in Ni–Mn alloys and Fe/Cr thin films; and (3) the Debye–Waller factors related to the chemical reactivity for catalysis in polyanions and ligand exchange reaction. This study shows that the local structure and dynamics are related to the characteristic function of the materials.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4061
Author(s):  
Yongtao Li ◽  
Liqing Liu ◽  
Dehao Wang ◽  
Hongguang Zhang ◽  
Xuemin He ◽  
...  

BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


2004 ◽  
Vol 108 (42) ◽  
pp. 16372-16376 ◽  
Author(s):  
Aline Léon ◽  
Oliver Kircher ◽  
Jörg Rothe ◽  
Maximilian Fichtner

Sign in / Sign up

Export Citation Format

Share Document