scholarly journals Synthesis of a Square-Planar Rhodium Alkylidene N-Heterocyclic Carbene Complex and Its Reactivity Toward Alkenes

2011 ◽  
Vol 30 (19) ◽  
pp. 5208-5213 ◽  
Author(s):  
Laura Palacios ◽  
Xiaowei Miao ◽  
Andrea Di Giuseppe ◽  
Simon Pascal ◽  
Carmen Cunchillos ◽  
...  
2004 ◽  
Vol 59 (5) ◽  
pp. 544-546 ◽  
Author(s):  
F. Ekkehardt Hahn ◽  
Thorsten von Fehren ◽  
Lars Wittenbecher ◽  
Roland Fröhlich

Abstract The reaction of the dibenzotetraazafulvalene C6H4(NC2H5)2C=C(NC2H5)2C6H4, 1 = 1, with [(COD)Rh(μ-Cl)2Rh(COD)] proceeds via cleavage of the C=C double bond and yields the carbene complex [(COD)RhCl(1)], 2. The X-ray structure analysis shows 2 to be a mononuclear complex with a rhodium(I) center coordinated in a slightly distorted square-planar fashion.


Author(s):  
Brett M. Hakey ◽  
Dylan C. Leary ◽  
Jin Xiong ◽  
Caleb F. Harris ◽  
Jonathan M. Darmon ◽  
...  

2017 ◽  
Vol 73 (12) ◽  
pp. 1131-1136 ◽  
Author(s):  
Christian Jandl ◽  
Alexander Pöthig

A monomeric PdII complex bearing a mixed carbocyclic/N-heterocyclic carbene ligand and two bromides was reacted with an excess of elemental iodine, which resulted in the surprising removal of one bromide ligand and dimerization of the mixed-carbene complex to form di-μ-bromido-bis{[1-(cyclohepta-2,4,6-trien-2-yl-1-ylidene-κC 1)-3-(2,6-diisopropylphenyl)imidazol-2-ylidene]palladium(II)} bis(pentaiodide) dichloromethane monosolvate, [Pd2Br2(C22H24N2)2](I5)2·CH2Cl2. The dimeric complex features a slightly distorted square-planar core of two PdII centres bridged by two bromide ligands, which lie in the same plane as the seven- and five-membered rings of the bidentate carbene ligand. The counter-ions in the single crystal were found to be pentaiodide monoanions featuring their typical V-shape, whereas for the bulk material, a mixture of Br/I interhalides is proposed.


2018 ◽  
Vol 74 (9) ◽  
pp. 1369-1372 ◽  
Author(s):  
Christopher A. Dodds ◽  
Alan R. Kennedy

The crystal structure of bis[μ-(1,3-dimesityl-1H-imidazol-3-ium-2-yl)methanolato-κ2 O:O]bis[dichloridocopper(II)], [Cu2Cl4(C22H26N2O)2], is reported. The complex is assumed to have formed via the insertion of formaldehyde into the copper–carbon bond in an N-heterocyclic carbene complex of copper(I) chloride. The structure of the binuclear molecule possesses a crystallographically centrosymmetric Cu2O2 central core with the O atoms bridging between the CuII atoms and thus Z′ = 0.5. The copper centres are further ligated by two chloride ligands, resulting in the CuII atoms residing in a distorted square-planar environment. The Cu—O bond lengths are shorter than those previously reported in structures with the same central Cu2O2 motif. The complex displays C—H...Cl interactions involving the H atoms of the heterocycle backbone and the chloride ligands of a neighbouring molecule.


Author(s):  
Maryvonne Hervieu

Four years after the discovery of superconductivity at high temperature in the Ba-La-Cu-O system, more than thirty new compounds have been synthesized, which can be classified in six series of copper oxides: La2CuO4 - type oxides, bismuth cuprates, YBa2Cu3O7 family, thallium cuprates, lead cuprates and Nd2CuO4 - type oxides. Despite their quite different specific natures, close relationships allow their structures to be simply described through a single mechanism. The fifth first families can indeed be described as intergrowths of multiple oxygen deficient perovskite slabs with multiple rock salt-type slabs, according to the representation [ACuO3-x]m [AO]n.The n and m values are integer in the parent structures, n varying from 0 to 3 and m from 1 to 4; every member of this large family can thus be symbolized by [m,n]. The oxygen deficient character of the perovskite slabs involves the existence or the co-existence of several types of copper environment: octahedral, pyramidal and square planar.Both mechanisms, oxygen deficiency and intergrowth, are well known to give rise easily to nonstoichiometry phenomena. Numerous and various phenomena have actually been characterized in these cuprates, strongly depending on the thermal history of the samples.


2019 ◽  
Author(s):  
Maria Ines Leitao ◽  
Carmen Gonzalez ◽  
Zuzanna Filipiak ◽  
Ana Petronilho

<p>7-methylguanosine, the so-called mRNA cap 0 bears a very labile C8-H bond, due to the formation of an ylide/N-heterocyclic carbene, upon proton loss. The reaction of 7-methylguanosine with Pt(PPh3)4, via C-H oxidative addition, yields a hydrido–PtII carbene complex and this reactivity can be extrapolated to 7,9-dimethylguanine. </p>


2020 ◽  
Vol 23 (7) ◽  
pp. 611-623
Author(s):  
Ahmed A. Soliman ◽  
Fawzy A. Attaby ◽  
Othman I. Alajrawy ◽  
Azza A.A. Abou-hussein ◽  
Wolfgang Linert

Aim and Objective: Platinum (II) and platinum (IV) of pyrophosphate complexes have been prepared and characterized to discover their potential as antitumor drugs. This study was conducted to prepare and characterize new ternary platinum (II) complexes with formamidine and pyrophosphate as an antitumor candidate. Materials and Methods: The complexes have been characterized by mass, infrared, UV-Vis. spectroscopy, elemental analysis, magnetic susceptibility, thermal analyses, and theoretical calculations. They have been tested for their cytotoxicity, which was carried out using the fastcolorimetric assay for cellular growth and survival against MCF-7 (breast cancer cell line), HCT- 116 (colon carcinoma cell line), and HepG-2 (hepatocellular cancer cell line). Results: All complexes are diamagnetic, and the electronic spectral data displayed the bands due to square planar Pt(II) complexes. The optimized complexes structures (1-4) indicated a distorted square planar geometry where O-Pt-O and N-Pt-N bond angles were 82.04°-96.44°, respectively. Conclusion: The complexes showed noticeable cytotoxicity and are considered as promising antitumor candidates for further applications.


1985 ◽  
Vol 50 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Jana Podlahová ◽  
Josef Šilha ◽  
Jaroslav Podlaha

Ethylenediphosphinetetraacetic acid is bonded to metal ions in aqueous solutions in four ways, depending on the type of metal ion: 1) through an ionic bond of the carboxylic groups to form weak complexes with a metal:ligand ratio of 1 : 1 (Ca(II), Mn(II), Zn(II), Pb(II), La(III)); 2) through type 1) bond with contributions from weak interaction with the phosphorus (Cd(II)); 3) through coordination of the ligand as a monodentate P-donor with the free carboxyl groups with formation of 2 : 1 and 1 : 1 complexes (Cu(I), Ag(I)); 4) through formation of square planar or, for Hg(II), tetrahedral complexes with a ratio of 1 : 2 with the ligand as a bidentate PP-donor with the free carboxyl groups (Fe(II), Co(II), Ni(II), Pd(II), Pt(II)). On acidification of the complex solution, the first two protons are bonded to the carboxyl groups. The behaviour during further protonation depends on the type of complex: in complexes of types 1) and 2) phosphorus is protonated and the complex dissociates; in complexes of types 3) and 4) the free carboxyl groups are protonated and the phosphorus-metal bond remains intact. The results are based on correlation of the stability constants, UV-visible, infrared, 1H and 31P NMR spectra and magnetic susceptibilities of the complexes in aqueous solution.


1985 ◽  
Vol 50 (6) ◽  
pp. 1383-1390
Author(s):  
Aref A. M. Aly ◽  
Ahmed A. Mohamed ◽  
Mahmoud A. Mousa ◽  
Mohamed El-Shabasy

The synthesis of the following mixed ligand complexes is reported: [Ni(phdtc)2(dpm)2], [Ni(phdtc)2(dpe)2], [Ni(phdtc)2(dpp)3], [Ni(1-naphdtc)2(dpm)2], [Ni(1-naphdtc)2], and [Ni(1-naphdtc)2(dpp)2], where phdtc = PhNHCSS-, 1-naphdtc = 1-NaPhNHCSS-, dpm = Ph2PCH2PPh2, dpe = Ph2P(CH2)2PPh2, and dpp = Ph2P(CH2)3PPh2. The complexes are characterised by microanalysis, IR and UV-Vis spectra, magnetic measurements, conductivity, X-ray powder diffraction, and thermal analysis. All the mixed ligand complexes are diamagnetic, and thus a square-planar or square-pyramidal (low-spin) structure was proposed for the present complexes.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


Sign in / Sign up

Export Citation Format

Share Document