Ultrasonic Measurement of the Crack Depth and the Crack Opening Stress Intensity Factor Under a No Load Condition

2004 ◽  
Vol 23 (2) ◽  
pp. 49-63 ◽  
Author(s):  
M. Saka ◽  
M. A. Salam Akanda
2005 ◽  
Vol 297-300 ◽  
pp. 1572-1578
Author(s):  
Yu Ting He ◽  
Feng Li ◽  
Rong Shi ◽  
G.Q. Zhang ◽  
L.J. Ernst ◽  
...  

When studying 3D fatigue crack growth behaviors of materials, to determine the crack opening stress intensity factor ratio is the key issue. Elastic-plastic Fracture Mechanics theory and physical mechanism of cracks’ closure phenomena caused by plastic deformation are employed here. A model for determining the crack opening stress intensity factor ratio under tri-axial stress state is presented. The comparison of the present model with available data and models shows quite good agreement.


Author(s):  
Zheng Liu ◽  
Xu Chen ◽  
Xin Wang

In the present paper, three-dimensional clamped SENT specimens, which is one of the most widely used low-constraint and less-conservative specimen, are analyzed by using a crack compliance analysis approach and extensive finite element analysis. Considering the test standard (BS8571) recommended specimen sizes, the daylight to width ratio, H/W, is 10.0, the relative crack depth, a/W, is varied by 0.2, 0.3, 0.4, 0.5 or 0.6 and the relative plate thickness, B/W, is chosen by 1.0, 2.0 or 4.0, respectively. Complete solutions of fracture mechanics parameters, including stress intensity factor (K), in-plane T-stress (T11) and out-of-plane T-stress (T33) are calculated, and the results obtained from above two methods have a good agreement. Moreover, the combination of the effects of a/W and B/W on the stress intensity factor K, T11 and T33 stress are thus illustrated.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1042 ◽  
Author(s):  
Gabriel Coêlho ◽  
Antonio Silva ◽  
Marco Santos ◽  
Antonio Lima ◽  
Neilor Santos

The purpose of this research is to compare both British standard BS 7910 (2013) and American standard API 579/ASME FFS-1 (2016) stress intensity factor (SIF) solutions by considering a series of semielliptical surface cracks located in the external surface of a pressurized hollow cylinder in the axial direction. Finite element analysis was used as a comparison basis for both standards’ SIF results. The solution from the British standard provided consistent results compared to Finite Element (FE) results for crack depth not much higher than half the thickness in the deepest and surface-breaking points. Above those limits, the British standard’s solutions diverged quite a lot from the American standard, whose results followed FE values for every crack depth/thickness ratio tested with a maximum percentage difference of 1.83%.


Author(s):  
Patrick Le Delliou ◽  
Stéphane Chapuliot

Analytical evaluation procedures for determining the acceptability of flaw detected during in-service inspection of nuclear power plant components are provided in Appendix 5.4 of the French RSE-M Code. Linear elastic fracture mechanics based evaluation procedures require calculation of the stress intensity factor (SIF). In Appendix 5.4 of the RSE-M Code, influence coefficients needed to compute the SIF are provided for a wide range of surface axial or circumferential flaws in cylinders, the through-wall stress field being represented by a cubic equation. On the other hand, Appendix C of API 579-1 FFS procedure provides also a very complete set of influence coefficients. The paper presents the comparison of the influence coefficients from both documents, focused on axial ID semi-elliptical surface flaws in cylinders. The cylinder and crack geometries are represented by three ratios: Ri/t, a/t, and a/c, where Ri, t, a, and c are respectively the inner radius, the wall thickness, the crack depth and one-half of the crack length. The solutions for the coefficients G0 and G1 at the deepest point and at the surface point are investigated. At the deepest point, the agreement between the solutions is good, the relative difference being lower than 2 %, except for the plate (Ri/t = ∞) at a/c = 0.125 and 0.0625 and a/t = 0.8 (around 5 %). At the surface point, the agreement between both solutions is not so good. At this point, the relative differences depend strongly on the a/c ratio, being larger for elongated cracks (with low a/c ratios). However, it must be recalled that the absolute values of the coefficients are low at the surface point for elongated cracks, and that for these cracks the critical point regarding the stress intensity factor is the deepest point.


Author(s):  
Igor Orynyak ◽  
Andrii Oryniak

The consideration of a geometrical nonlinearity is a common practice for the thin-walled structures. The relevance here are two well-known cases treated in ASME codes. First one is accounting for reduction of the pipe bends flexibility due to the inner pressure. The second one is the retarded increasing (and subsequent saturation) of additional local bending stress with increasing of inner pressure in a pipe with initial cross section form distortion. In both cases the rerounding effect and decreasing of local flexibilities take place. The crack can be treated as the concentrated flexibility and it is quite natural to expect that the stress intensity factor should grow nonlinearly with applied load. Two cases of SIF calculation for 1-D long axial surface crack in a pipe loaded by inner pressure are considered here: a) cross section has an ideal circular form: b) the form has a small distortion and crack is located in the place of maximal additional bending stresses. The theoretical analysis is based on: a) the well known crack compliance method [1] and b) analytical linearized solution obtained for deformation of the curved beam in case of action of fixed circumferential stress due to pressure written in the form convenient for transfer matrix method application. It was shown that for moderately deep crack (crack depth to the wall thickness ratio is 0.5 and bigger) and typical dimensions of pipes used for oil and gas transportation (radius to thickness ratio is 25–40) and loading which can reach up to 200 to 300 MPa, the effect investigated can be quite noticeable and can lead to 5–15 percent reduction of calculated SIF as compared with linear calculation. The analytical results are supported by nonlinear FEM calculation.


Author(s):  
Mayumi Ochi ◽  
Kiminobu Hojo ◽  
Itaru Muroya ◽  
Kazuo Ogawa

Alloy 600 weld joints have potential for primary water stress corrosion cracks (PWSCC). At the present time it has been understood that PWSCC generates and propagates in the Alloy 600 base metal and the Alloy 600 weld metal and there has been no observation of cracking the stainless and the low alloy steel. For the life time evaluation of the pipes or components the crack extension analysis is required. To perform the axial crack extension analysis the stress intensity database or estimation equation corresponding to the extension crack shape is needed. From the PWSCC extension nature mentioned above, stress intensity factors of the conventional handbooks are not suitable because most of them assume a semi-elliptical crack and the maximum aspect ratio crack depth/crack half length is one (The evaluation in this paper had been performed before API 579-1/ASME FFS was published). Normally, with the advance of crack extension in the thickness direction at the weld joint, the crack aspect ratio exceeds one and the K-value of the conventional handbook can not be applied. Even if those equations are applied, the result would be overestimated. In this paper, considering characteristics of PWSCC’s extension behavior in the welding material, the axial crack was modeled in the FE model as a rectangular shape and the stress intensity factors at the deepest point were calculated with change of crack depth. From the database of the stress intensity factors, the simplified equation of stress intensity factor with parameter of radius/thickness and thickness/weld width was proposed.


Author(s):  
Igor Varfolomeyev ◽  
Dieter Siegele ◽  
Dieter Beukelmann

In order to assess postulated cracks in weldments of a BWR core shroud residual stresses are calculated by simulating the welding process. In the numerical analysis, weld metal deposition and the sequence of weld passes follow the manufacture protocol. The calculations are performed using the finite element program ABAQUS and a material model with kinematic nonlinear hardening. Calculations of the crack driving parameter, the stress intensity factor, are carried out for postulated circumferential cracks using a numerical procedure, as well as by applying a weight function solution specially developed for cracks in a thin-walled cylinder. The results give rise to a discussion on the validity of linear elastic fracture mechanics for assessing defects in weldments. Additionally, for a complete circumferential crack the trend in the stress intensity factor is studied when the crack depth approaches the full wall thickness.


Sign in / Sign up

Export Citation Format

Share Document