Fullerites and Their Derivatives: Structure, Properties, and Their Possible Formation in Iron-Based Powder Materials

Metallurgist ◽  
2004 ◽  
Vol 48 (7/8) ◽  
pp. 345-352
Author(s):  
L. M. Grevnov
2021 ◽  
Vol 877 (1) ◽  
pp. 012009
Author(s):  
Mohammed Qasim Kareem ◽  
Vladimir Dorofeyev

Abstract It is possible to expand the applications ranges of powder material products by enhancing the performance properties of these products in addition to their manufacturability and reliability together, it’s possible by materials structures modification. In this paper, the effect of fullerene (C60) additives to iron-based powder material has been studied. All samples produced by Hot-Forging (HF) powder materials technology. Green and HF density of the obtained samples calculated by volume / weight and Archimede’s principle, respectively. The effect of technological parameters on the microstructure of carbon steels’ samples was done by an ALTAMI MET-1M metallographic microscope. Tensile test executed by using of a universal testing machine UMM –5 and the microhardness (HV10) was measured by REICHERT hardness test machine. The results showed that the HF C60 steels’ samples had higher density and strength of 0.81 and 25%, respectively, with a good plasticity in comparison with graphite steels’ samples.


1988 ◽  
Vol 27 (10) ◽  
pp. 805-809
Author(s):  
O. V. Evtushenko ◽  
S. M. Chernega

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1128
Author(s):  
Seyedeh-Masoumeh Taghizadeh ◽  
Aydin Berenjian ◽  
Marziyeh Zare ◽  
Alireza Ebrahiminezhad

Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. This review deals with iron as a magic element in the nano realm and provides comprehensive data about its structure, properties, synthesis techniques, and applications of various forms of iron-based nanostructures in the science, medicine, and technology sectors.


2019 ◽  
Vol 799 ◽  
pp. 252-256
Author(s):  
Simonas Mindaugas Jankus ◽  
Regita Bendikiene

The goal of this work was to investigate microstructure of the selective laser sintering (SLS) produced parts evaluating effect of powder type and fraction size. Studies have shown that printed samples of 316L and GP1 metal powders had a higher defect content compared to printed components from MP1 powder material. From scanning electron microscopy (SEM), it was found that iron-based printed parts melted worse than Co-Cr alloy components. Iron-based 316L and GP1 metal powders did not get enough energy from laser to perform a better microwelding between particles. Surface roughness Ra numerical values for samples 316L, GP1, MP1 respectively are Ra = 13.7 μm; 11.4 μm; 3.0 μm. Stainless steel powder material contains particles which size varies between 20 – 120 μm. The Co-Cr alloy and the maraging steel powder materials are made of 10 – 80 μm particles. The chemical and elemental composition of powder materials were examined using SEM-EDS technology.


2007 ◽  
Vol 534-536 ◽  
pp. 261-264
Author(s):  
Sheng Guan Qu ◽  
Yuan Yuan Li ◽  
Wei Xia ◽  
Wei Ping Chen

An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness. The proposed densification mechanism may provide an insight into understanding of warm compaction process.


Sign in / Sign up

Export Citation Format

Share Document