Thermodynamics of Quantum Information Systems — Hamiltonian Description

2004 ◽  
Vol 11 (03) ◽  
pp. 205-217 ◽  
Author(s):  
Robert Alicki ◽  
Michał Horodecki ◽  
Paweł Horodecki ◽  
Ryszard Horodecki

It is often claimed, that from a quantum system of d levels, and entropy S and heat bath of temperature T one can draw kT lnd–TS amount of work. However, the usual arguments basing on Szilard engine, are not fully rigorous. Here we prove the formula within Hamiltonian description of drawing work from a quantum system and a heat bath, at the cost of entropy of the system. We base on the derivation of thermodynamical laws and quantities in [10] within weak coupling limit. Our result provides fully physical scenario for extracting thermodynamical work form quantum correlations [4]. We also derive Landauer's principle as a consequence of the second law within the considered model.

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 725 ◽  
Author(s):  
Ángel Rivas

We present a thermodynamic framework for the refined weak coupling limit. In this limit, the interaction between system and environment is weak, but not negligible. As a result, the system dynamics becomes non-Markovian breaking divisibility conditions. Nevertheless, we propose a derivation of the first and second law just in terms of the reduced system dynamics. To this end, we extend the refined weak coupling limit for allowing slowly-varying external drivings and reconsider the definition of internal energy due to the non-negligible interaction.


Author(s):  
Krzysztof Szczygielski

We consider an open quantum system in [Formula: see text] governed by quasiperiodic Hamiltonian with rationally independent frequencies and under the assumption of Lyapunov–Perron reducibility of the associated Schrödinger equation. We construct the Markovian Master Equation and the resulting CP-divisible evolution in the weak coupling limit regime, generalizing our previous results from the periodic case. The analysis is conducted with the application of projection operator techniques and concluded with some results regarding stability of solutions and existence of quasiperiodic global steady state.


Does a quantum system, with no long-range interaction, which is uniformly accelerated through the Minkowski vacuum radiate as a result of excitation by the Unruh-Davies heat bath ? We address this question by considering the effect on an inertial harmonic oscillator (the ‘detector’) of a uniformly accelerated oscillator in the vacuum of a scalar field. We find that, contrary to the more prevalent view in the literature, if we take into account all the quantum correlations present in this experiment then no radiation will be detected.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 573
Author(s):  
Alexey V. Melkikh

Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, and, in the absence of local equilibrium, thermodynamics cannot be formulated correctly. Von Neumann entropy is not a thermodynamic quantity, although it can characterize the ordering of a system. In the case of the entanglement of the particles of the system with the environment, the concept of an isolated system should be refined. In any case, quantum correlations cannot lead to a violation of the second law of thermodynamics in any of its formulations. This article is devoted to a technical discussion of the expected results on the role of quantum entanglement in thermodynamics.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang ◽  
Yingfei Gu ◽  
Alexei Kitaev

Abstract We argue that “stringy” effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the leading diagrams are ladders with thin rungs. Thus, such models are unlikely candidates for sub-AdS holography. In the weak coupling limit, we derive a relation between the branching time, the Lyapunov exponent, and the quasiparticle lifetime using two different approximations.


2006 ◽  
Vol 74 (1) ◽  
Author(s):  
Sh. A. Kalandarov ◽  
Z. Kanokov ◽  
G. G. Adamian ◽  
N. V. Antonenko

1996 ◽  
Vol 10 (30) ◽  
pp. 1483-1490 ◽  
Author(s):  
M. MORENO ◽  
R. M. MÉNDEZ-MORENO ◽  
M. A. ORTIZ ◽  
S. OROZCO

Multi-band superconductors are analyzed and the relevance of overlapping energy bands to the high-T c of these materials is studied. Within the BCS framework, a two band model with generalized Fermi surface topologies is developed. Values of the overlapped occupancy parameters for typical cuprate superconductors are obtained as a function of the ratio R and the effective coupling constant, λ, in the weak-coupling limit. The overlap scale is of the order or lower than the cutoff (Debye) energy. The typical behavior of the isotope effect is obtained. As these superconductors have transition temperatures above the phonon barrier, the results of this approach are important to the generic understanding of the high-T c superconducting mechanism.


Author(s):  
Y. Yugra ◽  
F. De Zela

Coherence and quantum correlations have been identified as fundamental resources for quantum information tasks. As recently shown, these resources can be interconverted. In multipartite systems, entanglement represents a prominent case among quantum correlations, one which can be activated from coherence. All this makes coherence a key resource for securing the operational advantage of quantum technologies. When dealing with open systems, decoherence hinders full exploitation of quantum resources. Here, we present a protocol that allows reaching the maximal achievable amount of coherence in an open quantum system. By implementing our protocol, or suitable variants of it, coherence losses might be fully compensated, thereby leading to coherence revivals. We provide an experimental proof of principle of our protocol through its implementation with an all-optical setup.


Sign in / Sign up

Export Citation Format

Share Document