Effects of Lycopene in Hyperoxia-Induced Lung Injury in Newborn Rats

2018 ◽  
Vol 88 (5-6) ◽  
pp. 270-280
Author(s):  
Osman Bastug ◽  
Mehmet Fatih Sonmez ◽  
Mehmet Adnan Ozturk ◽  
Levent Korkmaz ◽  
Hakan Kesici ◽  
...  

Abstract. The aim of this study was to evaluate the therapeutic effect of lycopene on a hyperoxia-induced lung injury model in rat pups. Full-term rat pups were included in the study 12–24 h after delivery. The pups were separated into 4 groups: normoxia control (NC), hyperoxia control (HC), hyperoxia + lycopene (HL), and normoxia lycopene (NL). The normoxia groups were housed in ambient air, and the hyperoxia groups in > 85% O2. HL and NL groups received 50 mg lycopene in oil/kg body weight/day delivered intraperitoneally (i.p.), the other groups received oil alone. On day 11, the rat pups were sacrificed and their lungs removed. Statistically significant injury was observed in all histological parameters measured (MLI, proliferating cell nuclear antigen (PCNA), and apoptosis) in the HC group (HC vs NC, p = 0.001). This injury could not be reversed with lycopene treatment (HC vs HL, 0.05; NC vs HL, p = 0.001). With hyperoxia, statistically significant decreases were observed in biochemical parameters in terms of SOD, MDA, and IL-6 values (HC vs NC: SOD, p = 0.02; MDA, p = 0.043; IL-6, p = 0.001). The use of lycopene did not provide any improvement in these values (HC vs HL, p > 0.05). Hyperoxia or lycopene had no effect on IL-1β and GPx (p > 0.05). When comparing NC and NL groups, negative effects were observed in the group given lycopene in terms of MLI, PCNA, apoptosis, and IL-6 (all parameters, p = 0.001). We observed that 50 mg lycopene in oil/kg body weight/day given via i.p. had no curative effect on the hyperoxia-induced lung injury in newborn rats and may even induce adverse effects.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Godwin Adakole Ujah ◽  
Victor Udo Nna ◽  
Joseph Bagi Suleiman ◽  
Chinedum Eleazu ◽  
Chukwuemeka Nwokocha ◽  
...  

AbstractDoxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in the treatment of cancers. It acts by generating reactive oxygen species in target cells. The actions are, however, not limited to cancerous cells as it attacks healthy cells, killing them. This study investigated the benefits of the antioxidant, tert-butylhydroquinone (tBHQ), on testicular toxicity following DOX therapy. Twenty-four adult male albino rats were assigned randomly into four groups (n = 6), namely: normal control (NC), tBHQ, DOX and tBHQ + DOX groups. tBHQ (50 mg/kg body weight in 1% DMSO) was administered orally for 14 consecutive days, while a single DOX dose (7 mg/kg body weight) was administered intraperitoneally on Day 8. DOX decreased sperm count, motility and viability, and decreased the levels of steroidogenesis-related proteins, and reproductive hormones. Furthermore, DOX decreased the expression of antioxidant cytoprotective genes, and decreased the protein level of proliferating cell nuclear antigen in the testis. Conversely, DOX increased the expression of pro-inflammatory and pro-apoptotic genes in the testis. These negative effects were ameliorated following the intervention with tBHQ. Our results suggest that tBHQ protects the testis and preserves both steroidogenesis and spermatogenesis in DOX-treated rats through the suppression of oxidative stress, inflammation and apoptosis.


Author(s):  
John N. Cronin ◽  
João Batista Borges ◽  
Douglas C. Crockett ◽  
Andrew D. Farmery ◽  
Göran Hedenstierna ◽  
...  

Abstract Background Dynamic single-slice CT (dCT) is increasingly used to examine the intra-tidal, physiological variation in aeration and lung density in experimental lung injury. The ability of dCT to predict whole-lung values is unclear, especially for dual-energy CT (DECT) variables. Additionally, the effect of inspiration-related lung movement on CT variables has not yet been quantified. Methods Eight domestic pigs were studied under general anaesthesia, including four following saline-lavage surfactant depletion (lung injury model). DECT, dCT and whole-lung images were collected at 12 ventilatory settings. Whole-lung single energy scans images were collected during expiratory and inspiratory apnoeas at positive end-expiratory pressures from 0 to 20 cmH2O. Means and distributions of CT variables were calculated for both dCT and whole-lung images. The cranio-caudal displacement of the anatomical slice was measured from whole-lung images. Results Mean CT density and volume fractions of soft tissue, gas, iodinated blood, atelectasis, poor aeration, normal aeration and overdistension correlated between dCT and the whole lung (r2 0.75–0.94) with agreement between CT density distributions (r 0.89–0.97). Inspiration increased the matching between dCT and whole-lung values and was associated with a movement of 32% (SD 15%) of the imaged slice out of the scanner field-of-view. This effect introduced an artefactual increase in dCT mean CT density during inspiration, opposite to that caused by the underlying physiology. Conclusions Overall, dCT closely approximates whole-lung aeration and density. This approximation is improved by inspiration where a decrease in CT density and atelectasis can be interpreted as physiological rather than artefactual.


1994 ◽  
Vol 37 (1) ◽  
pp. 156
Author(s):  
Andrew Mikulaschek ◽  
Stantey Z Trooskin ◽  
Allen Nonn ◽  
Jason Winfield

2015 ◽  
Vol 205 ◽  
pp. 16-20 ◽  
Author(s):  
Yoshihiro Uzawa ◽  
Mikiya Otsuji ◽  
Koichi Nakazawa ◽  
Wei Fan ◽  
Yoshitsugu Yamada

1998 ◽  
Vol 43 ◽  
pp. 36-36
Author(s):  
Allyson M Goodman ◽  
L Kyle Walker ◽  
Oswaldo Rivera ◽  
Winslow R Seale ◽  
Billie L Short

1990 ◽  
Vol 18 (Supplement) ◽  
pp. S231 ◽  
Author(s):  
Lynn D. Martin ◽  
Anthony L. Bilenki ◽  
James F. Rafferty ◽  
Randall C. Wetzel

Sign in / Sign up

Export Citation Format

Share Document