Long-term Expression of Fibrogenic Cytokines in Radiation-Induced Damage to the Internal Anal Sphincter

Swiss Surgery ◽  
2003 ◽  
Vol 9 (4) ◽  
pp. 193-197 ◽  
Author(s):  
Gervaz ◽  
Hennig ◽  
Buechler ◽  
Soravia ◽  
Brigstock ◽  
...  

Background: There is accumulating evidence, both quantitative and qualitative, that pelvic irradiation affects anorectal function. However, the molecular mechanisms responsible for radiation-induced damage to the anal sphincter remain unclear. Aim: To determine the expression of transforming growth factor-beta1 (TGF-beta1) and its downstream effector connective tissue growth factor (CTGF) in the anal sphincter of a patient irradiated for prostate cancer. Patient: A 82 year-old patient developed a rectal adenocarcinoma and underwent an abdomino-perineal resection (APR), four years after receiving pelvic irradiation for prostate carcinoma. Methods: Tissue sections of the anal sphincter were processed for histology. Immunostaining for TGF-beta1 and CTGF were performed. Results: CTGF and TGF-beta1 immunoreactivity was detected in the irradiated anal sphincter, and was absent in controls. Immunoreactivity for both cytokines predominated in the internal sphincter. CTGF and TGF-beta1 were preferentially detected in endothelial cells, myofibroblasts and fibroblasts; in addition, there was strong immunoreactivity for TGF-beta1, but not for CTGF in smooth muscle cells of the anal canal. Conclusion: Four years after pelvic irradiation, radiation-induced damage appeared to affect predominantly the smooth muscle layer of the anal canal. The molecular mechanisms responsible for radiation-induced fibrosis to these tissues involve prolonged activation of TGF-beta1 and its downstream effector CTGF.

2006 ◽  
Vol 290 (1) ◽  
pp. L153-L161 ◽  
Author(s):  
Janette K. Burgess ◽  
Qi Ge ◽  
Maree H. Poniris ◽  
Sarah Boustany ◽  
Stephen M. Twigg ◽  
...  

Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-β on the release of connective tissue growth factor and vascular endothelial growth factor from human airway smooth muscle cells derived from asthmatic and nonasthmatic patients. In addition we studied the immunohistochemical localization of these cytokines in the extracellular matrix after stimulating bronchial rings with transforming growth factor-β. Connective tissue growth factor and vascular endothelial growth factor were released from both cell types and colocalized in the surrounding extracellular matrix. Prostaglandin E2 inhibited the increase in connective tissue growth factor mRNA but augmented the release of vascular endothelial growth factor. Matrix metalloproteinase-2 decreased the amount of connective tissue growth factor and vascular endothelial growth factor, but not fibronectin deposited in the extracellular matrix. This report provides the first evidence that connective tissue growth factor may anchor vascular endothelial growth factor to the extracellular matrix and that this deposition is decreased by matrix metalloproteinase-2 and prostaglandin E2. This relationship has the potential to contribute to the changes that constitute airway remodeling, therefore providing a novel focus for therapeutic intervention in asthma.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Toru Tanaka ◽  
Takehisa Shimizu ◽  
Norimichi Koitabashi ◽  
Hiroki Matsui ◽  
Hiroshi Doi ◽  
...  

[Objective] Runx2, a key transcription factor in osteoblast differentiation, is expressed in calcified atherosclerotic plaques. We have recently shown that Runx2 represses vascular smooth muscle cells (VSMCs) differentiation and promotes their osteogenic differentiation. Connective tissue growth factor (CTGF) has been implicated in the progression to vulnerable plaque by inducing mononuclear cell chemotaxis and VSMCs apoptosis despite of its potent stimulatory effect on connective tissue cell the proliferation and extracellular matrix synthesis. To assess the role of Runx2 in the process of plaque development, we investigated the molecular mechanism of the CTGF gene expression by Runx2 in VSMCs. [Methods and Results] RT-PCR analyses showed that adenovirally overexpressed Runx2 significantly repressed the basal expression of the CTGF gene in human aortic SMCs (HASMCs). Consistent with this, knockdown of the Runx2 expression in HASMCs by small interfering RNA (siRNA) increased CTGF mRNA levels. Luciferase assays showed that Runx2 reduced the transcriptional activity of the CTGF promoter. Transfection of a series of 5′-deletion constructs revealed that Runx2 inhibited CTGF expression through the sequence element located at 5′ untranslated region of CTGF mRNA. We next examined the effects of Runx2 on the TGFβ-induced CTGF expression. Runx2 overexpression significantly repressed CTGF expression in HASMCs stimulated with TGFβ, and knockdown of Runx2 by siRNA enhanced the induction of CTGF expression in response to TGFβ. Runx2 repressed TGFβ-induced CTGF promoter activity through the sequence including Smad binding element (SBE). Overexpression of Runx2 significantly reduced TGFβ- and Smad3-mediated luciferase activity of Smad-dependent promoter which contains four copies of SBE. Biotinylated DNA pulldown assay using SBE of CTGF promoter showed that Runx2 formed a complex with Smad3 and Smad4. [Conclusion] Runx2 repressed basal and TGFβ-induced CTGF gene expression in VSMCs. Thus, in addition to the potential for inducing vascular calcification, Runx2 may affect plaque stability by modulating extracellular matrix synthesis through inhibiting CTGF gene expression and TGFβ signaling.


Author(s):  
Jing Yan ◽  
Wen-Bin Wang ◽  
Yang-Jing Fan ◽  
Han Bao ◽  
Na Li ◽  
...  

Endothelial progenitor cells (EPCs) play a vital role in endothelial repair following vascular injury by maintaining the integrity of endothelium. As EPCs home to endothelial injury sites, they may communicate with exposed vascular smooth muscle cells (VSMCs), which are subjected to cyclic stretch generated by blood flow. In this study, the synergistic effect of cyclic stretch and communication with neighboring VSMCs on EPC function during vascular repair was investigated. In vivo study revealed that EPCs adhered to the injury site and were contacted to VSMCs in the Sprague–Dawley (SD) rat carotid artery injury model. In vitro, EPCs were cocultured with VSMCs, which were exposed to cyclic stretch at a magnitude of 5% (which mimics physiological stretch) and a constant frequency of 1.25 Hz for 12 h. The results indicated that stretched VSMCs modulated EPC differentiation into mature endothelial cells (ECs) and promoted angiogenesis. Meanwhile, cyclic stretch upregulated the mRNA expression and secretion level of connective tissue growth factor (CTGF) in VSMCs. Recombinant CTGF (r-CTGF) treatment promoted endothelial differentiation of EPCs and angiogenesis, and increased their protein levels of FZD8 and β-catenin. CTGF knockdown in VSMCs inhibited cyclic stretch-induced EPC differentiation into ECs and attenuated EPC tube formation via modulation of the FZD8/β-catenin signaling pathway. FZD8 knockdown repressed endothelial differentiation of EPCs and their angiogenic activity. Wnt signaling inhibitor decreased the endothelial differentiation and angiogenetic ability of EPCs cocultured with stretched VSMCs. Consistently, an in vivo Matrigel plug assay demonstrated that r-CTGF-treated EPCs exhibited enhanced angiogenesis; similarly, stretched VSMCs also induced cocultured EPC differentiation toward ECs. In a rat vascular injury model, r-CTGF improved EPC reendothelialization capacity. The present results indicate that cyclic stretch induces VSMC-derived CTGF secretion, which, in turn, activates FZD8 and β-catenin to promote both differentiation of cocultured EPCs into the EC lineage and angiogenesis, suggesting that CTGF acts as a key intercellular mediator and a potential therapeutic target for vascular repair.


2014 ◽  
Vol 28 (12) ◽  
pp. 1934-1947 ◽  
Author(s):  
Yuechao Zhao ◽  
Quanxi Li ◽  
Benita S. Katzenellenbogen ◽  
Lester F. Lau ◽  
Robert N. Taylor ◽  
...  

Endometriosis is a prevalent gynecological disorder in which endometrial tissue proliferates in extrauterine sites, such as the peritoneal cavity, eventually giving rise to painful, invasive lesions. Dysregulated estradiol (E) signaling has been implicated in this condition. However, the molecular mechanisms that operate downstream of E in the ectopic endometrial tissue are unknown. To investigate these mechanisms, we used a mouse model of endometriosis. Endometrial tissue from donor mice was surgically transplanted on the peritoneal surface of immunocompetent syngeneic recipient mice, leading to the establishment of cystic endometriosis-like lesions. Our studies revealed that treatment with E led to an approximately 3-fold increase in the lesion size within a week of transplantation. E also caused a concomitant stimulation in the expression of connective tissue growth factor/Cyr61/Nov (CCN1), a secreted cysteine-rich matricellular protein, in the lesions. Interestingly, CCN1 is highly expressed in human ectopic endometriotic lesions. To address its role in endometriosis, endometrial tissue from Ccn1-null donor mice was transplanted in wild-type recipient mice. The resulting ectopic lesions were reduced up to 75% in size compared with wild-type lesions due to diminished cell proliferation and cyst formation. Notably, loss of CCN1 also disrupted the development of vascular networks in the ectopic lesions and reduced the expression of several angiogenic factors, such as vascular endothelial growth factor-A and vascular endothelial growth factor-C. These results suggest that CCN1, acting downstream of E, critically controls cell proliferation and neovascularization, which support the growth and survival of endometriotic tissue at ectopic sites. Blockade of CCN1 signaling during the early stages of lesion establishment may provide a therapeutic avenue to control endometriosis.


Sign in / Sign up

Export Citation Format

Share Document