Individual Differences in Personality Traits

2015 ◽  
Vol 29 (3) ◽  
pp. 107-111
Author(s):  
A. Karimizadeh ◽  
Amin Mahnam ◽  
M. R. Yazdchi ◽  
M. A. Besharat

Abstract. During the last decade, an increasing number of studies have used neuroscientific methods to examine the relationships between different personality traits and brain structures. This includes the Magnetic Resonance Imaging (MRI)-based analysis of correlations between individual differences in personality traits and the structural variance of specific brain regions. Perfectionism is a personality trait that remains relatively stable over time, and it is influenced by heredity. In this study, the possible brain regions that structurally correlated with both positive and negative perfectionism were investigated. Voxel-based morphometry was used to analyze the whole brain MRI images of 49 participants, and their levels of perfectionism were also evaluated using a standard scale. The statistical analysis revealed significant correlations between negative perfectionism and the gray matter volume of the thalamus and left posterior parietal cortex (precuneus) structures. This finding suggests that differences in perfectionism between individuals may reflect structural variances in these regions of the brain.

2020 ◽  
pp. 107385842094152
Author(s):  
Svenja Brodt ◽  
Steffen Gais

While in the past much of our knowledge about memory representations in the brain has relied on loss-of-function studies in which whole brain regions were temporarily inactivated or permanently lesioned, the recent development of new methods has ushered in a new era of downright “engram excitement.” Animal research is now able to specifically label, track, and manipulate engram cells in the brain. While early studies have mostly focused on single brain regions like the hippocampus, recently more and more evidence for brain-wide distributed engram networks is emerging. Memory research in humans has also picked up pace, fueled by promising magnetic resonance imaging (MRI)-based methods like diffusion-weighted MRI (DW-MRI) and brain decoding. In this review, we will outline recent advancements in engram research, with a focus on human data and neocortical representations. We will illustrate the available noninvasive methods for the detection of engrams in different neocortical regions like the medial prefrontal cortex and the posterior parietal cortex and discuss evidence for systems consolidation and parallel memory encoding. Finally, we will explore how reactivation and prior knowledge can lead to and enhance engram formation in the neocortex.


2021 ◽  
pp. 089198872098891
Author(s):  
Regina Eun Young Kim ◽  
Robert Douglas Abbott ◽  
Soriul Kim ◽  
Robert Joseph Thomas ◽  
Chang-Ho Yun ◽  
...  

This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.


2020 ◽  
Author(s):  
Joshua M. Carlson ◽  
Lin Fang

AbstractIn a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted MRI scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the anterior cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the right posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct sub-regions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat and targets of neuroplasticity in anxiety interventions such as attention bias modification.


2021 ◽  
Author(s):  
Osama Hamadelseed ◽  
Thomas Skutella

Abstract INTRODUCTION: Down syndrome (DS) is the most common genetic cause of intellectual disability. Here, we use magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes.METHODS: Thirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls were analyzed by MRI and underwent a psychological evaluation for language and cognitive abilities.RESULTS: The neuropsychological profile of DS patients showed deficits in different cognition and language domains in correlation with reduced volumes of specific regional and subregional brain structures.CONCLUSIONS: The memory functions and language skills affected in our DS patients correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.


2018 ◽  
Vol 1 ◽  
Author(s):  
Sebastian Markett ◽  
Christian Montag ◽  
Martin Reuter

AbstractPersonality and individual differences originate from the brain. Despite major advances in the affective and cognitive neurosciences, however, it is still not well understood how personality and single personality traits are represented within the brain. Most research on brain-personality correlates has focused either on morphological aspects of the brain such as increases or decreases in local gray matter volume, or has investigated how personality traits can account for individual differences in activation differences in various tasks. Here, we propose that personality neuroscience can be advanced by adding a network perspective on brain structure and function, an endeavor that we label personality network neuroscience.With the rise of resting-state functional magnetic resonance imaging (MRI), the establishment of connectomics as a theoretical framework for structural and functional connectivity modeling, and recent advancements in the application of mathematical graph theory to brain connectivity data, several new tools and techniques are readily available to be applied in personality neuroscience. The present contribution introduces these concepts, reviews recent progress in their application to the study of individual differences, and explores their potential to advance our understanding of the neural implementation of personality.Trait theorists have long argued that personality traits are biophysical entities that are not mere abstractions of and metaphors for human behavior. Traits are thought to actually exist in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous system refers to the attempt to describe parts of the central nervous system in functional terms with relevance to psychology and behavior. We contend that personality network neuroscience can characterize these conceptual nervous systems on a functional and anatomical level and has the potential do link dispositional neural correlates to actual behavior.


2017 ◽  
Vol 29 (2) ◽  
pp. 368-381 ◽  
Author(s):  
Jordan E. Pierce ◽  
Jennifer E. McDowell

Cognitive control is engaged to facilitate stimulus–response mappings for novel, complex tasks and supervise performance in unfamiliar, challenging contexts—processes supported by pFC, ACC, and posterior parietal cortex. With repeated task practice, however, the appropriate task set can be selected in a more automatic fashion with less need for top–down cognitive control and weaker activation in these brain regions. One model system for investigating cognitive control is the ocular motor circuitry underlying saccade production, with basic prosaccade trials (look toward a stimulus) and complex antisaccade trials (look to the mirror image location) representing low and high levels of cognitive control, respectively. Previous studies have shown behavioral improvements on saccade tasks after practice with contradictory results regarding the direction of functional MRI BOLD signal change. The current study presented healthy young adults with prosaccade and antisaccade trials in five mixed blocks with varying probability of each trial type (0%, 25%, 50%, 75%, or 100% anti vs. pro) at baseline and posttest MRI sessions. Between the scans, participants practiced either the specific probability blocks used during testing or only a general 100% antisaccade block. Results indicated an overall reduction in BOLD activation within pFC, ACC, and posterior parietal cortex and across saccade circuitry for antisaccade trials. The specific practice group showed additional regions including ACC, insula, and thalamus with an activation decrease after practice, whereas the general practice group showed a little change from baseline in those clusters. These findings demonstrate that cognitive control regions recruited to support novel task behaviors were engaged less after practice, especially with exposure to mixed task contexts rather than a novel task in isolation.


2012 ◽  
Vol 24 (8) ◽  
pp. 1657-1663 ◽  
Author(s):  
Gary J. Lewis ◽  
Ryota Kanai ◽  
Timothy C. Bates ◽  
Geraint Rees

Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were “individualizing” (values of harm/care and fairness) and “binding” (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.


2019 ◽  
Vol 2 ◽  
Author(s):  
Christoph Scheffel ◽  
Kersten Diers ◽  
Sabine Schönfeld ◽  
Burkhard Brocke ◽  
Alexander Strobel ◽  
...  

Abstract A common and mostly effective emotion regulation strategy is reappraisal. During reappraisal, activity in cognitive control brain regions increases and activity in brain regions associated with emotion responding (e.g., the amygdala) diminishes. Immediately after reappraisal, it has been observed that activity in the amygdala increases again, which might reflect a paradoxical aftereffect. While there is extensive empirical evidence for these neural correlates of emotion regulation, only few studies targeted the association with individual differences in personality traits. The aim of this study is to investigate these associations more thoroughly. Seventy-six healthy participants completed measures of broad personality traits (Big Five, Positive and Negative Affect) as well as of more narrow traits (habitual use of emotion regulation) and performed an experimental fMRI reappraisal task. Participants were instructed to either permit their emotions or to detach themselves from the presented negative and neutral pictures. After each picture, a relaxation period was included. Reappraisal success was determined by arousal ratings and activity in the amygdala. During reappraisal, we found activation in the prefrontal cortex and deactivation in the left amygdala. During the relaxation period, an immediate aftereffect was found in occipital regions and marginally in the amygdala. Neither personality traits nor habitual use of emotion regulation predicted reappraisal success or the magnitude of the aftereffect. We replicated typical activation and deactivation patterns during intentional emotion regulation and partially replicated the immediate aftereffect in the amygdala. However, there was no association between personality traits and emotion regulation success.


2021 ◽  
Author(s):  
Magnus Frisk ◽  
Fredrik Åhs ◽  
Kristoffer Månsson ◽  
Jörgen Rosén ◽  
Granit Kastrati

Enthusiasm and assertiveness are two subordinate personality traits of extraversion. These traits reflect different aspects of extroversion and have distinct implications on mental health. Whereas enthusiasm predicts satisfaction in life and positive relationships, assertiveness predicts psychological distress and reduced social support. The neural basis of these subordinate traits is not well understood. To investigate brain regions where enthusiasm and assertiveness have diverging relationship with morphology, enthusiasm and assertiveness were regressed to gray matter volume (GMV) across the whole brain in a sample of 301 healthy individuals. A significant interaction was found between enthusiasm and assertiveness in the left angular gyrus (t(296) = 4.18, family wise error corrected, FWE p = .001 (cluster-level); Cluster size = 880 voxels). Larger GMV in this area was associated with more enthusiasm and less assertiveness. Our study emphasizes the value of separating extraversion into its subordinate traits when investigating associations to neuroanatomy.


Sign in / Sign up

Export Citation Format

Share Document