Memory Processes, Aging, Cognitive Decline, and Neurodegenerative Diseases

2006 ◽  
Vol 11 (4) ◽  
pp. 304-311 ◽  
Author(s):  
Lars-Göran Nilsson

This paper presents four domains of markers that have been found to predict later cognitive impairment and neurodegenerative disease. These four domains are (1) data patterns of memory performance, (2) cardiovascular factors, (3) genetic markers, and (4) brain activity. The critical features of each domain are illustrated with data from the longitudinal Betula Study on memory, aging, and health ( Nilsson et al., 1997 ; Nilsson et al., 2004 ). Up to now, early signs regarding these domains have been examined one by one and it has been found that they are associated with later cognitive impairment and neurodegenerative disease. However, it was also found that each marker accounts for only a very small part of the total variance, implying that single markers should not be used as predictors for cognitive decline or neurodegenerative disease. It is discussed whether modeling and simulations should be used as tools to combine markers at different levels to increase the amount of explained variance.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie Langella ◽  
◽  
Muhammad Usman Sadiq ◽  
Peter J. Mucha ◽  
Kelly S. Giovanello ◽  
...  

AbstractWith an increasing prevalence of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in response to an aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older adults, with individuals with early and late MCI, as well as the relationship between redundancy and cognition. Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our results provide support that hippocampal redundancy protects against cognitive decline in aging.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrea Brioschi Guevara ◽  
Melanie Bieler ◽  
Daniele Altomare ◽  
Marcelo Berthier ◽  
Chantal Csajka ◽  
...  

AbstractCognitive complaints in the absence of objective cognitive impairment, observed in patients with subjective cognitive decline (SCD), are common in old age. The first step to postpone cognitive decline is to use techniques known to improve cognition, i.e., cognitive enhancement techniques.We aimed to provide clinical recommendations to improve cognitive performance in cognitively unimpaired individuals, by using cognitive, mental, or physical training (CMPT), non-invasive brain stimulations (NIBS), drugs, or nutrients. We made a systematic review of CMPT studies based on the GRADE method rating the strength of evidence.CMPT have clinically relevant effects on cognitive and non-cognitive outcomes. The quality of evidence supporting the improvement of outcomes following a CMPT was high for metamemory; moderate for executive functions, attention, global cognition, and generalization in daily life; and low for objective memory, subjective memory, motivation, mood, and quality of life, as well as a transfer to other cognitive functions. Regarding specific interventions, CMPT based on repeated practice (e.g., video games or mindfulness, but not physical training) improved attention and executive functions significantly, while CMPT based on strategic learning significantly improved objective memory.We found encouraging evidence supporting the potential effect of NIBS in improving memory performance, and reducing the perception of self-perceived memory decline in SCD. Yet, the high heterogeneity of stimulation protocols in the different studies prevent the issuing of clear-cut recommendations for implementation in a clinical setting. No conclusive argument was found to recommend any of the main pharmacological cognitive enhancement drugs (“smart drugs”, acetylcholinesterase inhibitors, memantine, antidepressant) or herbal extracts (Panax ginseng, Gingko biloba, and Bacopa monnieri) in people without cognitive impairment.Altogether, this systematic review provides evidence for CMPT to improve cognition, encouraging results for NIBS although more studies are needed, while it does not support the use of drugs or nutrients.


2021 ◽  
Vol 33 (S1) ◽  
pp. 90-91
Author(s):  
Alena Sidenkova

IntroductionThe aging processes are accelerating in all regions of the world. The involvement of older people in production and social processes determines the need to maintain a high level of social and psychological adaptation, despite the progressive pathology of the brain caused by its aging. This increases the relevance of research related to the study of biological reserves of the brain and psychological and social mechanisms of human adaptation in late adulthood. The risk of developing cognitive disorders is not fatal. According to some observations, even in the hippocampal type of UKR, despite the content of amyloid in the brain, the functional and social activity of the elderly remains high. Prospective studies show that people with high cognitive reserve have a lower risk of developing dementia. Cognitive reserve is the brain’s resistance to damage. Cognitive reserve is the ability of the brain to cope with the consequences of damage caused by external influences, brain stroke, chronic brain ischemia, neurodegenerative diseases, and age-related changes. Cognitive reserve is the brain’s ability to functionally compensate for and minimize clinical manifestations of cognitive impairment. The mechanisms of cognitive reserve in normal and Alzheimer’s disease are different. In healthy older adults, a higher cognitive reserve correlates with larger brain sizes and effective strategies for performing cognitive tasks. In the early stages of Alzheimer’s disease and Alzheimer’s disease, the size of the brain decreases. But high brain activity helps preserve cognitive resources. Excessive brain activity in dementia is a compensatory mechanism. This is confirmed by the results of functional magnetic resonance imaging of the brain. Of course, the degree of brain atrophy is a predisposing factor for dementia, but it is not a mandatory factor for cognitive decline. So, the symptoms of dementia do not appear until you have crossed the critical border of damage to the brain substance. Progressive brain atrophy underlies the clinical manifestations of dementia in neurodegenerative diseases, but the correlation between the degree of brain damage and cognitive impairment is not linear.Research materials and methodsAn observational 10-year longitudinal study was conducted. In 2006, moderate cognitive impairment was found in 66 patients. The group of patients included 49 women and 49 men. Their average age in 2006 was 59.3±5.2 years. In 2006, the severity of cognitive decline was 26.2±1.9 points on the MMSE scale. This corresponds to indicators of moderate cognitive impairment. Research methods: clinical and psychopathological, psychometric, statistical. Questionnaire “Loss and acquisition of personal resources” (N. Vodopyanova, M. Stein), MMSE scale.Research resultIn 2006, amyloid was detected in the spinal fluid of all patients selected for the study group. If a patient developed dementia, they were given specific therapy. The dynamics of cognitive functions in patients was different. Mild dementia was formed in 53% of patients. Moderate dementia was formed in 10.6% of patients. Moderate cognitive impairment (pre-dementia) persisted in 36.4% of patients. Hereditary burden of dementia in patients with moderate dementia was detected 2 times more often. Back in 2006, we identified the leading sensory systems of patients. The master sensor system determines the modality of the main information flow. This is the most important part of the information that a person interacts with. This is the basis of interaction with reality. This is the basis of cognitive functions. Correlations of age-specific lesions of the corresponding sensory systems with the severity of cognitive decline were found in patients with the corresponding sensory modality (Spearman’s Correlation Coefficient-r, p<0.05): presbyacoussis – auditory r=0.667, presbyopia-visual r=0.705. The influence of psychosocial factors on the condition of patients was studied. In dementia, significant history of psychotrauma was found in 35.7%. Moderate stress was detected in the group of patients with moderate cognitive impairment in 33.3%. Moderate stress was detected in the group of patients with dementia in 83.3%. Stress of loss of life meaning was detected more often in patients with dementia 76.7%. It is important not only what stresses a person endures, but how they can cope with them. Dementia patients were statistically more likely to have unproductive coping strategies that did not help them cope adequately with stress.ConclusionsThe concept of cognitive reserve suggests possible causes of heterogeneity in the dynamics of cognitive decline in the initial stages of atrophic-degenerative brain diseases: biological causes and psychosocial causes. The concept of cognitive reserve helps to study and develop individual programs for the prevention of severe cognitive disorders.


2017 ◽  
Vol 7 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Erik Hessen ◽  
Marie Eckerström ◽  
Arto Nordlund ◽  
Ina Selseth Almdahl ◽  
Jacob Stålhammar ◽  
...  

Background/Aims: In the quest for prevention or treatment, there is a need to find early markers for preclinical dementia. This study observed memory clinic patients with subjective cognitive impairment (SCI) and normal cognitive function at baseline. The primary aim was to address SCI as a potential risk factor for cognitive decline. The secondary aim was to address a potential relation between (1) baseline cerebrospinal fluid biomarkers and (2) a decline in memory performance over the first 2 years of follow-up, with a possible cognitive decline after 6 years. Methods: Eighty-one patients (mean age 61 years) were recruited from university memory clinics and followed up for 6 years. Results: Eighty-six percent of the cohort remained cognitively stable or improved, 9% developed mild cognitive impairment, and only 5% (n = 4) developed dementia. Regression analysis revealed that low levels of Aβ42 at baseline and memory decline during the first 2 years predicted dementia. When combined, these variables were associated with a 50% risk of developing dementia. Conclusions: Cognitive stability for 86% of the cohort suggests that SCI is predominantly a benign condition with regard to neuropathology. The low number of individuals who developed dementia limits the generalizability of the results and discussion of progression factors.


2021 ◽  
pp. 1-14
Author(s):  
Monica E. Nelson ◽  
Ross Andel ◽  
Zuzana Nedelska ◽  
Julie Martinkova ◽  
Katerina Cechova ◽  
...  

Background: Identifying modifiable risk factors for cognitive decline can reduce burden of dementia. Objective: We examined whether homocysteine was associated with memory performance, mediated by entorhinal volume, hippocampal volume, total gray matter volume, or white matter lesions, and moderated by APOE ɛ4 allele, B vitamins, creatinine, total cholesterol, or triglycerides. Methods: All 204 members of the Czech Brain Aging Study with subjective cognitive decline (SCD; n = 60) or amnestic mild cognitive impairment (aMCI; n = 144) who had valid data were included. Linear regression was used, followed by conditional process modeling to examine mediation and moderation. Results: Controlling for age, sex, and education, higher homocysteine was related to poorer memory performance overall (b = –0.03, SE = 0.01, p = 0.017) and in participants with SCD (b = –0.06, SE = 0.03, p = 0.029), but less so in aMCI (b = –0.03, SE = 0.02, p = 0.074); though sensitivity analyses revealed a significant association when sample was reduced to aMCI patients with more complete cognitive data (who were also better functioning; b = –0.04, SE = 0.02, p = 0.022). Results were unchanged in fully adjusted models. Neither mediation by markers of brain integrity nor moderation by APOE ɛ4, B vitamins, creatinine, and cardiovascular factors were significant. Memory sub-analyses revealed that results for SCD were likely driven by non-verbal memory. The homocysteine-memory relationship was significant when hippocampal volume was below the median (b = –0.04, SE = 0.02, p = 0.046), but not at/above the median (p = 0.247). Conclusion: Higher homocysteine levels may adversely influence memory performance, particularly in those without cognitive impairment. Results appear to be independent of brain health, suggesting that homocysteine may represent a good target for intervention.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Katharina Klink ◽  
Urs Jaun ◽  
Andrea Federspiel ◽  
Marina Wunderlin ◽  
Charlotte E. Teunissen ◽  
...  

Abstract Background Several fMRI studies found hyperactivity in the hippocampus during pattern separation tasks in patients with Mild Cognitive Impairment (MCI; a prodromal stage of Alzheimer’s disease). This was associated with memory deficits, subsequent cognitive decline, and faster clinical progression. A reduction of hippocampal hyperactivity with an antiepileptic drug improved memory performance. Pharmacological interventions, however, entail the risk of side effects. An alternative approach may be real-time fMRI neurofeedback, during which individuals learn to control region-specific brain activity. In the current project we aim to test the potential of neurofeedback to reduce hippocampal hyperactivity and thereby improve memory performance. Methods In a single-blind parallel-group study, we will randomize n = 84 individuals (n = 42 patients with MCI, n = 42 healthy elderly volunteers) to one of two groups receiving feedback from either the hippocampus or a functionally independent region. Percent signal change of the hemodynamic response within the respective target region will be displayed to the participant with a thermometer icon. We hypothesize that only feedback from the hippocampus will decrease hippocampal hyperactivity during pattern separation and thereby improve memory performance. Discussion Results of this study will reveal whether real-time fMRI neurofeedback is able to reduce hippocampal hyperactivity and thereby improve memory performance. In addition, the results of this study may identify predictors of successful neurofeedback as well as the most successful regulation strategies. Trial registration The study has been registered with clinicaltrials.gov on the 16th of July 2019 (trial identifier: NCT04020744).


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


Sign in / Sign up

Export Citation Format

Share Document