scholarly journals Introduction to special section: New Views of the Moon II, a series of papers related to the lunar science initiative “New views of the moon enabled by combined remotely sensed and lunar sample data sets”

2000 ◽  
Vol 105 (E8) ◽  
pp. 20275-20276 ◽  
Author(s):  
Bradley L. Jolliff
2017 ◽  
Vol 4 (1) ◽  
pp. 41-52
Author(s):  
Dedy Loebis

This paper presents the results of work undertaken to develop and test contrasting data analysis approaches for the detection of bursts/leaks and other anomalies within wate r supply systems at district meter area (DMA)level. This was conducted for Yorkshire Water (YW) sample data sets from the Harrogate and Dales (H&D), Yorkshire, United Kingdom water supply network as part of Project NEPTUNE EP/E003192/1 ). A data analysissystem based on Kalman filtering and statistical approach has been developed. The system has been applied to the analysis of flow and pressure data. The system was proved for one dataset case and have shown the ability to detect anomalies in flow and pres sure patterns, by correlating with other information. It will be shown that the Kalman/statistical approach is a promising approach at detecting subtle changes and higher frequency features, it has the potential to identify precursor features and smaller l eaks and hence could be useful for monitoring the development of leaks, prior to a large volume burst event.


1980 ◽  
Vol 102 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
M. E. Crawford ◽  
W. M. Kays ◽  
R. J. Moffat

Experimental research into heat transfer from full-coverage film-cooled surfaces with three injection geometries was described in Part I. This part has two objectives. The first is to present a simple numerical procedure for simulation of heat transfer with full-coverage film cooling. The second objective is to present some of the Stanton number data that was used in Part I of the paper. The data chosen for presentation are the low-Reynolds number, heated-starting-length data for the three injection geometries with five-diameter hole spacing. Sample data sets with high blowing ratio and with ten-diameter hole spacing are also presented. The numerical procedure has been successfully applied to the Stanton number data sets.


2007 ◽  
Vol 18 (1) ◽  
pp. 107-108 ◽  
Author(s):  
William R. Fowler

This is the twenty-fifth Special Section published in Ancient Mesoamerica, and therefore it represents something of a milestone in the history of the journal. The goal has been to present in each special section a collection of related papers from a single project or region or on a selected topic to provide readers a tightly integrated summary of current research and interpretations. Certainly one of the most compelling and provocative special sections we have published was “Urban Archaeology at Teotihuacan” which appeared in vol. 2, no. 1 (1991). This collection of papers featured two stunning articles on the Feathered Serpent Pyramid, then often referred to as the Temple of Quetzalcoatl. Constructed in the early third century A.D., the Feathered Serpent Pyramid, along with the Sun Pyramid and the Moon Pyramid, was one of the three most powerful monuments in the sacred urban landscape of Teotihuacan. Rubén Cabrera Castro, Saburo Sugiyama, and George L. Cowgill (1991) reported on excavations in the 1980s of the Feathered Serpent Pyramid and the investigation of more than 137 sacrificial burials, including more than 70 males identified as soldiers because of associated offerings, discovered at the base of and underneath the pyramid. In the second article, Alfredo López Austin, Leonardo López Luján, and Saburo Sugiyama (1991) presented their brilliant iconographic analysis of the sculptural facades of the Feathered Serpent Pyramid, arguing that the monumental structure was dedicated to the myth of the origin of time and calendric succession, a tangible cosmogonic proclamation that Teotihuacan was “the place where time began.”


2015 ◽  
Vol 639 ◽  
pp. 21-30 ◽  
Author(s):  
Stephan Purr ◽  
Josef Meinhardt ◽  
Arnulf Lipp ◽  
Axel Werner ◽  
Martin Ostermair ◽  
...  

Data-driven quality evaluation in the stamping process of car body parts is quite promising because dependencies in the process have not yet been sufficiently researched. However, the application of data mining methods for the process in stamping plants would require a large number of sample data sets. Today, acquiring these data represents a major challenge, because the necessary data are inadequately measured, recorded or stored. Thus, the preconditions for the sample data acquisition must first be created before being able to investigate any correlations. In addition, the process conditions change over time due to wear mechanisms. Therefore, the results do not remain valid and a constant data acquisition is required. In this publication, the current situation in stamping plants regarding the process robustness will be first discussed and the need for data-driven methods will be shown. Subsequently, the state of technology regarding the possibility of collecting the sample data sets for quality analysis in producing car body parts will be researched. At the end of this work, an overview will be provided concerning how this data collection was implemented at BMW as well as what kind of potential can be expected.


2018 ◽  
Author(s):  
Arghavan Bahadorinejad ◽  
Ivan Ivanov ◽  
Johanna W Lampe ◽  
Meredith AJ Hullar ◽  
Robert S Chapkin ◽  
...  

AbstractWe propose a Bayesian method for the classification of 16S rRNA metagenomic profiles of bacterial abundance, by introducing a Poisson-Dirichlet-Multinomial hierarchical model for the sequencing data, constructing a prior distribution from sample data, calculating the posterior distribution in closed form; and deriving an Optimal Bayesian Classifier (OBC). The proposed algorithm is compared to state-of-the-art classification methods for 16S rRNA metagenomic data, including Random Forests and the phylogeny-based Metaphyl algorithm, for varying sample size, classification difficulty, and dimensionality (number of OTUs), using both synthetic and real metagenomic data sets. The results demonstrate that the proposed OBC method, with either noninformative or constructed priors, is competitive or superior to the other methods. In particular, in the case where the ratio of sample size to dimensionality is small, it was observed that the proposed method can vastly outperform the others.Author summaryRecent studies have highlighted the interplay between host genetics, gut microbes, and colorectal tumor initiation/progression. The characterization of microbial communities using metagenomic profiling has therefore received renewed interest. In this paper, we propose a method for classification, i.e., prediction of different outcomes, based on 16S rRNA metagenomic data. The proposed method employs a Bayesian approach, which is suitable for data sets with small ration of number of available instances to the dimensionality. Results using both synthetic and real metagenomic data show that the proposed method can outperform other state-of-the-art metagenomic classification algorithms.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ting Hon ◽  
Kristin Mars ◽  
Greg Young ◽  
Yu-Chih Tsai ◽  
Joseph W. Karalius ◽  
...  

AbstractThe PacBio® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10–25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.


2020 ◽  
Vol 12 (22) ◽  
pp. 3676
Author(s):  
Xuesen Xu ◽  
Jianjun Liu ◽  
Dawei Liu ◽  
Bin Liu ◽  
Rong Shu

The main objective of this study is to develop a Hapke photometric model that is suited for Chang’E-1 (CE-1) Interference Imaging Spectrometer (IIM) data. We first divided the moon into three areas including ‘maria’, ‘new highland’ and old ‘highland’ with similar photometry characteristic based on the Hapke parameters of the moon derived from Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral data. Then, we selected the sample data in the ‘maria’ area and obtained a new set of Hapke model’s parameters that can best fit these data. Result shows that photometric correction using Hapke model with these new derived parameters can eliminate the effect of variations in viewing and luminating geometry, especially ‘opposition surge’, more efficiently than the empirical model. The corrected mosaic shows no significant artifacts along the tile boundaries and more detailed information of the image can be exhibited due to a better correction of ‘opposition surge’ at small phase angle (g < 15°).


Sign in / Sign up

Export Citation Format

Share Document