scholarly journals Long-Term Soil Water Content Database, Reynolds Creek Experimental Watershed, Idaho, United States

2001 ◽  
Vol 37 (11) ◽  
pp. 2847-2851 ◽  
Author(s):  
M. S. Seyfried ◽  
M. D. Murdock ◽  
C. L. Hanson ◽  
G. N. Flerchinger ◽  
S. Van Vactor
2000 ◽  
Vol 40 (1) ◽  
pp. 37 ◽  
Author(s):  
S. J. Lolicato

Fortnightly soil water content measurements to a depth of 2.1 m under 4 cocksfoot cultivars, 2 phalaris cultivars, 2 lucerne cultivars and 1 Lotus corniculatus cultivar were used to compare soil profile drying and to define seasonal patterns of plant water use of the species over a 3-year period, on a duplex soil. Cultivars were also selected, within species groups, for varying seasonal growth patterns to assess this influence on soil water dynamics and growth. Over the 3-year period, treatments with the highest and lowest measures of profile soil water content were used to derive and compare values of maximum plant extractable water. Plots were maintained for a further 3 years, after which soil water content measurements in autumn were used to assess long-term effects of the treatments. The effect of seasonal growth patterns within a species was negligible; however, there were significant differences between species. Twenty-one months after pasture establishment, lucerne alone had a drying effect at 2.0 m depth and subsequently it consistently showed profiles with the lowest soil water content. Maximum plant extractable water was greatest for lucerne (230 mm), followed by phalaris (210 mm), Lotus corniculatus (200 mm) and cocksfoot (170 mm). Profiles with the lowest soil water content were associated with greater herbage growth and greater depths of water extraction. The soil water deficits developed by the treatments in autumn of the fourth year were similar to those measured in autumn of the seventh year, implying that a species-dependant equilibrium had been reached. Long-term rainfall data is used to calculate the probabilities of recharge occurring when rainfall exceeds maximum potential deficits for the different pasture species.


2014 ◽  
Vol 94 (3) ◽  
pp. 435-452 ◽  
Author(s):  
S. Liu ◽  
J. Y. Yang ◽  
C. F. Drury ◽  
H. L. Liu ◽  
W. D. Reynolds

Liu, S., Yang, J. Y., Drury, C. F., Liu, H. L. and Reynolds, W. D. 2014. Simulating maize (Zea mays L.) growth and yield, soil nitrogen concentration, and soil water content for a long-term cropping experiment in Ontario, Canada. Can. J. Soil Sci. 94: 435–452. A performance assessment of the Decision Support Systems for Agrotechnology Transfer (DSSAT) model (v4.5) including the CERES-Maize and CENTURY modules was conducted for continuous maize production under annual synthetic fertilization (CC-F) and no fertilization (CC-NF) using field data from a long-term (53-yr) cropping experiment in Ontario, Canada. The assessment was based on the accuracy with which DSSAT could simulate measured grain yield, above-ground biomass, leaf area index (LAI), soil inorganic nitrogen concentration, and soil water content. Model calibration for maize cultivar was achieved using grain yield measurements from CC-F between 2007 and 2012, and model evaluation was achieved using soil and crop measurements from both CC-F and CC-NF for the same 6-yr period. Good model–data agreement for CC-F grain yields was achieved for calibration (index of agreement, d=0.99), while moderate agreement for CC-NF grain yields was achieved for evaluation (d=0.79). Model–data agreement for above-ground biomass was good (d=0.83–1.00), but the model consistently underestimated for CC-F and overestimated for CC-NF. DSSAT achieved good model–data agreement for LAI in CC-F (d=0.82–0.99), but moderate to poor agreement in CC-NF (d=0.46–0.64). The CENTURY module of DSSAT simulated soil inorganic nitrogen concentrations with moderate to good model–data agreement in CC-F (d=0.74–0.88), but poor agreement in CC-NF (d=0.40–0.50). The model–data agreement for soil water content was moderate in 2007 and 2008 for both treatments (d=0.60–0.76), but poor in 2009 (d=0.46–0.53). It was concluded that the DSSAT cropping system model provided generally good to moderate simulations of continuous maize production (yield, biomass, LAI) for a long-term cropping experiment in Ontario, Canada, but generally moderate to poor simulations of soil inorganic nitrogen concentration and soil water content.


2020 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Johannes Lehmann

2020 ◽  
Vol 8 ◽  
Author(s):  
Guohua Wang ◽  
Qianqian Gou ◽  
Yulian Hao ◽  
Huimin Zhao ◽  
Xiafang Zhang

An understanding of soil water content dynamics is important for vegetation restoration in an arid desert-oasis ecotone under different landscapes. In this study, the dynamics of soil water content under three typical landscapes (i.e., desert, sand-binding shrubland, and farmland shelter woodland) were investigated in the Hexi Corridor, northwest China, during the growing season from 2002 to 2013. The results showed that the soil water content in the deep layers decreased from 20–30% to a stable low level of 3–5% in the desert and shrubland. For the farmland shelter woodland, the soil water content at the deep layers also decreased, but the decrease rate was much smaller than the desert and shrubland. The decrease of soil water content in the deep soil layers among desert–shrubland–woodland was strongly associated with the increase of groundwater depths. The greatest increase of groundwater depths mainly occurred during 2008–2011, while the largest decrease of soil water content took place during the years 2009–2011, with a time-lag in response to increase in groundwater depths. This study provides new insight into the long-term dynamics of soil water content in a typical desert oasis ecotone under different landscape components from the influence of overexploiting groundwater that cannot be inferred from a short-term study. The findings demonstrate that the sharp increase of groundwater depths could be the main reason behind the reduction of soil water content in the clay interlayers, and sustainable development of groundwater resources exploitation is very important for the management of desert-oasis ecotone from a long-term perspective.


2010 ◽  
Vol 56 (No. 9) ◽  
pp. 408-411 ◽  
Author(s):  
C.Y. Song ◽  
X.Y. Zhang ◽  
X.B. Liu ◽  
Y.Y. Sui ◽  
Z.L. Li

Soil water content under no fertilizer (NF), fertilizer (F) (N:30; P<sub>2</sub>O<sub>5</sub>: 45 kg/ha), and fertilizer plus pig manure (FO) (N:30; P<sub>2</sub>O<sub>5</sub>: 45 kg/ha; pig manure 15 000 kg/ha in 2003; and 30 000 kg/ha in 2004 and 2005) treatments was measured using neutron probe instrument for a period three years in a long term field experiment in order to investigate the impact of different fertilization treatments on Haploborolls soil water content. Fertilization had significant effects on the soil water content. FO treatment had greater soil water content in 10 cm depth than F treatment with average 9.9% increase (P &lt; 0.05) but lower than NF treatment; however, in the depth from 30 to 90 cm, there was no water content difference between F and FO treatments. Treatment with organic amendments reduced total soil water content on the long term experiment basis. Across the three years, no fertilizer treatment had total soil water content higher by 1.2% and 3.1% than fertilizer treatment and fertilizer plus pig manure treatment within 10 to 210 cm soil profile in most of the months, respectively.


2004 ◽  
Vol 57 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Xin Rong Li ◽  
Feng Yun Ma ◽  
Hong Lang Xiao ◽  
Xin Ping Wang ◽  
Ke Chung Kim

2020 ◽  
Author(s):  
Christine Fischer ◽  
Sophia Leimer ◽  
Christiane Roscher ◽  
Janneke Ravenek ◽  
Hans de Kroon ◽  
...  

&lt;p&gt;Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (e.g. belowground- and aboveground biomass). For the characterization of soil moisture, including its variability and the resulting water and matter fluxes, the knowledge of the relative importance of these factors is of major challenge. Because of the spatial heterogeneity of its drivers soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment).&lt;/p&gt;&lt;p&gt;The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 in 0.1, 0.2, 0.3, 0.4, and 0.6 m soil depth using Delta T theta probe.&lt;/p&gt;&lt;p&gt;The analysis showed that both plant species richness and the presence of particular functional groups affected soil water content, while functional group richness per se played no role. Plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008.&lt;/p&gt;&lt;p&gt;Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths.Shortly after establishment, increased topsoil water content was related to higher leaf area index in species&amp;#8208;rich plots, which enhanced shading. In later years, higher species richness increased topsoil organic carbon, likely improving soil aggregation. Improved aggregation, in turn, dried topsoils in species&amp;#8208;rich plots due to faster drainage of rainwater.&lt;/p&gt;&lt;p&gt;Our decade&amp;#8208;long experiment shows that besides abiotic factors like texture, soil water patterns are consistently affected by biotic factors such as species diversity and plant functional types, but also properties that originate from biotic-abiotic interactions such as soil structure. Especially the effect of plant species richness propagated to deeper soil layers 8 years after the establishment of the experiment, and while originally caused by shading it was later related to altered soil physical characteristics in addition to modification of water uptake depth. Functional groups affected soil water distribution, likely due to plant traits affecting root water uptake depths, shading, or water&amp;#8208;use efficiency. Our results highlight the role of vegetation composition for soil processes and emphasize the need for long-term experiments to discover diversity effects in slow reacting systems like soil.&lt;/p&gt;


1997 ◽  
Vol 77 (4) ◽  
pp. 565-570 ◽  
Author(s):  
Verlan L. Cochran ◽  
Elena B. Sparrow ◽  
Sharon F. Schlentner ◽  
Charles W. Knight

Methane and nitrous oxide are important radiatively active gases that are influenced by agricultural practices. This study assesses long-term tillage, crop residue management, and N fertilization rates on the flux of these two gases at a high latitude site representing the northern fringe of large-scale agriculture. Cumulative methane uptake for the summer was higher from no-tillage plots than tilled plots. This was associated with lower soil water contents with tillage. Thus, the reduction in CH4 uptake was attributed to water stress on methane oxidizers. At planting, soil water contents were near field capacity, and the no-till plots had the lowest uptake which was attributed to restricted diffusion of methane to active sites. A similar pattern of methane uptake to soil water content was found with the residue management treatments. Removing the straw lowered the soil water content and for most of the season methane uptake was also lower than where the straw had been left on the plots. Nitrogen fertilizer rate had little effect on methane uptake over the summer, but high N rates lowered consumption during the time of active nitrification early in the season. This corresponded to the time of maximum efflux of nitrous oxide. Nitrous oxide efflux was greatest at the high N rate where straw was retained on the plots. Key words: Methane, nitrous oxide, nitrification, denitrification, barley


2016 ◽  
Author(s):  
Foad Foolad ◽  
Trenton E. Franz ◽  
Tiejun Wang ◽  
Justin Gibson ◽  
Ayse Kilic ◽  
...  

Abstract. In this study the feasibility of using inverse vadose zone modeling for estimating field scale actual evapotranspiration (ETa) was explored at a long-term agricultural monitoring site in eastern Nebraska. Data from both point scale soil water content sensors (SWC) and the area-average technique of cosmic-ray neutron probes were evaluated against independent ETa estimates from a co-located eddy covariance tower. While this methodology has been successfully used for estimates of groundwater recharge it was critical to assess the performance of other components of the water balance such as ETa. In light of the recent evaluation of Land Surface Model (LSM) performance from the plumber experiment, independent estimates of hydrologic state variables and fluxes are critically needed benchmarks. The results here indicate reasonable estimates of daily and annual ETa from the point sensors but with highly varied soil hydraulic function parameterizations due to local soil texture variability. The results of multiple soil hydraulic parameterizations leading to equally good ETa estimates is consistent with the hydrological principle of equifinality. While this study focused on one particular site the framework can be easily applied to other SWC monitoring networks across the globe. The value added products of groundwater recharge and ETa flux from the SWC monitoring networks will provide additional and more robust benchmarks for the validation of LSM that continue to improve their forecast skill. In addition, the value added products of groundwater recharge and ETa often have more direct impacts on societal decision making than SWC alone. Water flux impacts human decision making from policies on the long-term management of groundwater resources (recharge), to yield forecasts (ETa), and to optimal irrigation scheduling (ETa). Illustrating the societal benefits of SWC monitoring is critical to insure the continued operation and expansion of these public datasets.


Sign in / Sign up

Export Citation Format

Share Document