scholarly journals Steady state turnover time of carbon in the Australian terrestrial biosphere

2002 ◽  
Vol 16 (4) ◽  
pp. 55-1-55-21 ◽  
Author(s):  
Damian J. Barrett
2018 ◽  
Vol 15 (21) ◽  
pp. 6559-6572 ◽  
Author(s):  
Xingjie Lu ◽  
Ying-Ping Wang ◽  
Yiqi Luo ◽  
Lifen Jiang

Abstract. Ecosystem carbon (C) transit time is a critical diagnostic parameter to characterize land C sequestration. This parameter has different variants in the literature, including a commonly used turnover time. However, we know little about how different transit time and turnover time are in representing carbon cycling through multiple compartments under a non-steady state. In this study, we estimate both C turnover time as defined by the conventional stock over flux and mean C transit time as defined by the mean age of C mass leaving the system. We incorporate them into the Community Atmosphere Biosphere Land Exchange (CABLE) model to estimate C turnover time and transit time in response to climate warming and rising atmospheric [CO2]. Modelling analysis shows that both C turnover time and transit time increase with climate warming but decrease with rising atmospheric [CO2]. Warming increases C turnover time by 2.4 years and transit time by 11.8 years in 2100 relative to that at steady state in 1901. During the same period, rising atmospheric [CO2] decreases C turnover time by 3.8 years and transit time by 5.5 years. Our analysis shows that 65 % of the increase in global mean C transit time with climate warming results from the depletion of fast-turnover C pool. The remaining 35 % increase results from accompanied changes in compartment C age structures. Similarly, the decrease in mean C transit time with rising atmospheric [CO2] results approximately equally from replenishment of C into fast-turnover C pool and subsequent decrease in compartment C age structure. Greatly different from the transit time, the turnover time, which does not account for changes in either C age structure or composition of respired C, underestimated impacts of warming and rising atmospheric [CO2] on C diagnostic time and potentially led to deviations in estimating land C sequestration in multi-compartmental ecosystems.


2020 ◽  
Author(s):  
Naixin Fan ◽  
Simon Besnard ◽  
Maurizio Santoro ◽  
Oliver Cartus ◽  
Nuno Carvalhais

<p>The global biomass is determined by the vegetation turnover times (τ) and carbon fixation through photosynthesis. Vegetation turnover time is a central parameter that not only partially determines the terrestrial carbon sink but also the response of terrestrial vegetation to the future changes in climate. However, the change of magnitude, spatial patterns and uncertainties in τ as well as the sensitivity of these processes to climate change is not well understood due to lack of observations on global scale. In this study, we explore a new dataset of annual above-ground biomass (AGB) change from 1993 to 2018 from spaceborne scatterometer observations. Using the long-term, spatial-explicit global dynamic dataset, we investigated how τ change over almost three decades including the uncertainties. Previous estimations of τ under steady-state assumption can now be challenged acknowledging that terrestrial ecosystems are, for the most of cases, not in balance. In this study, we explore this new dataset to derive global maps of τ in non-steady-state for different periods of time. We used a non-steady-state carbon model in which the change of AGB is a function of Gross Primary Production (GPP) and τ (ΔAGB = α*GPP-AGB/ τ). The parameter α represents the percentage of incorporation of carbon from GPP to biomass. By exploring the AGB change in 5 to 10 years of time step, we were able to infer τ and α from the observations of AGB and GPP change by solving the linear equation. We show how τ changes after potential disturbances in the early 2000s in comparison to the previous decade. We also show the spatial distributions of α from the change of AGB. By accessing the change in biomass, τ and α as well as their associated uncertainties, we provide a comprehensive diagnostic on the vegetation dynamics and the potential response of biomass to disturbance and to climate change.   </p><p></p><p></p><p></p><p></p><p></p><p></p>


1992 ◽  
Vol 49 (2) ◽  
pp. 252-258 ◽  
Author(s):  
T. R. Fisher ◽  
D. R. S. Lean

Models of planktonic phosphorus dynamics over the last 30–40 yr depend on the steady-state distribution of isotope for the determination of compartment size. Radiophosphate data for P-deficient lakes in summer have shown a steady-state distribution of 1–15% of 32P in the filtrate within 0.5–5 h. To explain this, a phosphate back-flux term from the particulate fraction has been widely accepted (phosphate is believed to be released from the internal pools of phosphate consumers and by excretion from herbivores and bacterivores). We show that dialysis of lake water at isotopic steady state provides values for the dissolved [32P]PO4 compartment up to an order of magnitude lower than those obtained by membrane filtration and gel filtration chromatography. This apparently occurs as a result of minor cell damage during filtration when most of the [32P]PO4 is in the particulate pool. Consequently, the size of the phosphate pool and the magnitudes of phosphate uptake and back-flux may have been overestimated by up to a factor of 10. Furthermore, the turnover time of the particulate compartment lengthens from ~ 40 min to > 1 d, which is more consistent with models describing P fluxes between functional components of the plankton.


1992 ◽  
Vol 286 (2) ◽  
pp. 357-359 ◽  
Author(s):  
S G Waley

The scope and limitations of a simple and satisfactory method of deducing steady-state rate equations is described. This method (called the Flux Method) consists in writing down the flux in successive steps of the reaction, and calculating the relative concentration of enzyme forms and thence the turnover time. Kinetic mechanisms for linear and branched pathways are used as examples of this method.


1971 ◽  
Vol 125 (2) ◽  
pp. 425-432 ◽  
Author(s):  
M. D. Hatch

1. Leaves were exposed to 14CO2 under steady-state conditions for photosynthesis. The kinetics of entry or loss of label in pools of CO2 and other compounds was examined during the period of the pulse and a ‘chase’ with 12CO2. 2. With maize the kinetics of labelling of the major CO2 pool and of depletion of label during a ‘chase’ was consistent with this pool being derived from the C-4 of malate and being the precursor of the C-1 of 3-phosphoglycerate. 3. Similar results were obtained for Amaranthus leaves except that the C-4 of aspartate rather than malate was apparently the primary source of CO2. 4. The size and turnover time of the CO2 and C4 acid pools was calculated. These results provided the basis for estimating the concentration of CO2 in the bundle-sheath cells or chloroplasts assuming the pool was largely restricted to one or other of these compartments. 5. These findings are considered in relation to current schemes for the C4-pathway and the operation of a CO2 concentrating mechanism to serve ribulose diphosphate carboxylase.


2021 ◽  
Author(s):  
Stephen E. Schwartz

Abstract. The global budgets of CO2 and of excess CO2 (i.e., above preindustrial) in the biogeosphere are examined by a top-down, observationally constrained approach. Global stocks in the atmosphere, mixed-layer and deep ocean, and labile and obdurate terrestrial biosphere, and fluxes between them are quantified; total uptake of carbon by the terrestrial biosphere is constrained by observations, but apportionment to the two terrestrial compartments is only weakly constrained, requiring examination of sensitivity to this apportionment. Because of near equilibrium between the atmosphere and the mixed-layer ocean and near steady state between the atmosphere and the labile biosphere, these three compartments are tightly coupled. For best-estimate present-day anthropogenic emissions the turnover time of excess carbon in these compartments to the deep ocean and obdurate biosphere is 67 to 158 years. Atmospheric CO2 over the Anthropocene is accurately represented by a five-compartment model with four independent parameters: two universal geophysical quantities and two, specific to CO2, treated as variable. The model also accurately represents atmospheric radiocarbon, particularly the large increase due to atmospheric testing of nuclear weapons and the subsequent decrease. The adjustment time of excess atmospheric CO2, evaluated from the rate of decrease following abrupt cessation of emissions, is 78 to 140 years, consistent with the turnover time, approaching a long-time floor of 15–20 % of the value at the time of cessation. The lifetime of excess CO2 found here, several-fold shorter than estimates from current carbon-cycle models, indicates that cessation of anthropogenic emissions atmospheric would result in substantial recovery of CO2 toward its preindustrial value in less than a century.


1969 ◽  
Vol 112 (5) ◽  
pp. 647-656 ◽  
Author(s):  
D. E. F. Harrison ◽  
P. K. Maitra

1. A rapid-sampling technique was used to obtain perchloric acid extracts of cells growing in a chemostat culture, so that meaningful values for ATP content could be obtained in spite of the fact that the turnover time for the total ATP content was about 1sec. 2. For steady-state growth, it was found that, in a glucose-limited chemostat culture, the ATP/ADP concentration ratio was approximately constant with changes in dissolved-oxygen tensions above the critical value, but fell when the culture was grown under oxygen-limited conditions and was at a minimum in anaerobically grown cultures. The steady-state ATP content was lower in cells growing under nitrogen-limited conditions with glucose in excess than in glucose-limited cells. The steady-state ATP content was independent of growth rate at growth rates over 0·1hr.−1. 3. When the respiration rate of the cells was stimulated by lowering the oxygen tension the ATP content did not increase, indicating either an increased turnover rate of ATP or a fall in the P/O ratio. The sudden addition of extra glucose or succinate to a glucose-limited culture increased the respiration rate of the cells, but the ATP content quickly returned to the steady-state value after initial perturbations. This control over ATP content is explained in terms of regulation by adenine nucleotides of the catabolism and anabolism of glucose. An exception to this control over ATP content was found when the respiration rate was stimulated by addition of an antifoam.


Sign in / Sign up

Export Citation Format

Share Document