scholarly journals Spaceborne ClO observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) before and during the Antarctic major warming in September/October 2002

2004 ◽  
Vol 109 (D11) ◽  
Author(s):  
N. Glatthor
2005 ◽  
Vol 5 (5) ◽  
pp. 10723-10745 ◽  
Author(s):  
M. Höpfner ◽  
N. Larsen ◽  
R. Spang ◽  
B. P. Luo ◽  
J. Ma ◽  
...  

Abstract. Space borne infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) reveal the formation of a belt of polar stratospheric clouds (PSCs) of nitric acid trihydrate (NAT) particles over Antarctica in mid-June 2003. By mesoscale microphysical simulations we show that this sudden onset of NAT PSCs was caused by heterogeneous nucleation on ice in the cooling phases of large-amplitude stratospheric mountain waves over the Antarctic Peninsula and the Ellsworth Mountains. MIPAS observations of PSCs before this event show no indication for the presence of NAT clouds with volume densities larger than about 0.3 μm3/cm3 and radii smaller than 3 μm, but are consistent with supercooled droplets of ternary H2SO4/HNO3/H2O solution (STS). Simulations indicate that homogeneous surface nucleation rates have to be reduced by three orders of magnitude to comply with the observations.


2011 ◽  
Vol 11 (12) ◽  
pp. 33191-33227
Author(s):  
E. Arnone ◽  
E. Castelli ◽  
E. Papandrea ◽  
M. Carlotti ◽  
B. M. Dinelli

Abstract. We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs). We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. Through inspection of MIPAS spectra, 84% of PSCs were identified as supercooled ternary solution (STS) or STS mixed with nitric acid trihydrate (NAT), 16% formed mostly by NAT particles, and only a few by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Sporadic increases of NO2 associated with evaporation of sedimenting PSCs were also observed. Once the PSC season halted, ClO was reconverted into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values, the 2010–2011 vortex in late winter had 15 K lower temperatures, 40% lower HNO3 and 50% lower ozone, reaching the largest ozone depletion ever observed in the Arctic. The overall picture of this Arctic winter was remarkably closer to conditions typically found in the Antarctic vortex than ever observed before.


2006 ◽  
Vol 6 (5) ◽  
pp. 1221-1230 ◽  
Author(s):  
M. Höpfner ◽  
N. Larsen ◽  
R. Spang ◽  
B. P. Luo ◽  
J. Ma ◽  
...  

Abstract. Space borne infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) reveal the formation of a belt of polar stratospheric clouds (PSCs) of nitric acid trihydrate (NAT) particles over Antarctica in mid-June 2003. By mesoscale microphysical simulations we show that this sudden onset of NAT PSCs was caused by heterogeneous nucleation on ice in the cooling phases of large-amplitude stratospheric mountain waves over the Antarctic Peninsula and the Ellsworth Mountains. MIPAS observations of PSCs before this event show no indication for the presence of NAT clouds with volume densities larger than about 0.3 µm3/cm3 and radii smaller than 3 µm, but are consistent with supercooled droplets of ternary H2SO4/HNO3/H2O solution (STS). Simulations indicate that homogeneous surface nucleation rates have to be reduced by three orders of magnitude to comply with the observations.


2011 ◽  
Vol 11 (7) ◽  
pp. 20793-20822
Author(s):  
T. von Clarmann ◽  
B. Funke ◽  
N. Glatthor ◽  
S. Kellmann ◽  
M. Kiefer ◽  
...  

Abstract. Monthly zonal mean HOCl measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) are presented for the episode from June 2002 to March 2004. Highest molar mixing ratios are found at pressure levels between 6 and 2 hPa, whereby largest mixing ratios occasionally exceed 200 ppt. The mixing ratio maximum is generally at lower altitudes in the summer hemisphere than in the winter hemisphere except for chlorine activation conditions in polar vortices, where enhanced HOCl abundances are also found in the lower stratosphere. During nighttime the maximum is found at higher altitudes than during daytime. Particularly low values are found in subpolar regions in the winter hemisphere, coinciding with the mixing barrier formed by the polar vortex boundary. The Antarctic polar winter HOCl distribution in 2002, the year of the split of the southern polar vortex, resembles northern polar winters rather than other southern polar winters. Increased HOCl amounts in response to the so-called Halloween solar proton event in autumn 2003 affect the representativeness of data recorded during this particular episode. Calculations with the EMAC model reproduce the structure of the measured HOCl distribution but predict approximately 40 % less HOCl except during polar night in the mid-stratosphere where calculated HOCl mixing ratios exceed observed ones.


2017 ◽  
Vol 17 (18) ◽  
pp. 11521-11539 ◽  
Author(s):  
Stefan Lossow ◽  
Hella Garny ◽  
Patrick Jöckel

Abstract. The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.


2014 ◽  
Vol 56 ◽  
Author(s):  
Shaomin Cai ◽  
Anu Dudhia

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument which operated on the Envisat satellite from 2002-2012 is a Fourier transform spectrometer for the measurement of high-resolution gaseous emission spectra at the Earth's limb. It operates in the near- to mid-infrared, where many of the main atmospheric trace gases have important emission features. The initial operational products were profiles of Temperature, H2O, O3, CH4, N2O, HNO3, and NO2, and this list was recently extended to include N2O5, ClONO2, CFC-11 and CFC-12. Here we present preliminary results of retrievals of the third set of species under consideration for inclusion in the operational processor: HCN, CF4, HCFC-22, COF2 and CCl4.


2007 ◽  
Vol 7 (13) ◽  
pp. 3639-3662 ◽  
Author(s):  
T. Steck ◽  
T. von Clarmann ◽  
H. Fischer ◽  
B. Funke ◽  
N. Glatthor ◽  
...  

Abstract. This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe – Instituto de Astrofisica de Andalucia) science-oriented processor from high spectral resolution data (until March 2004) measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III). Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are generally within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision degrades to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.


2012 ◽  
Vol 5 (2) ◽  
pp. 487-500 ◽  
Author(s):  
A. de Lange ◽  
M. Birk ◽  
G. de Lange ◽  
F. Friedl-Vallon ◽  
O. Kiselev ◽  
...  

Abstract. The first profile retrieval results of the Terahertz and submillimeter Limb Sounder (TELIS) balloon instrument are presented. The spectra are recorded during a 13-h balloon flight on 24 January 2010 from Kiruna, Sweden. The TELIS instrument was mounted on the MIPAS-B2 gondola and shared this platform with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the mini-Differential Optical Absorption Spectroscopy (mini-DOAS) instruments. The flight took place within the Arctic vortex at an altitude of ≈34 km in chlorine activated air, and both active (ClO) and inactive chlorine (HCl) were measured over an altitude range of respectively ≈16–32 km and ≈10–32 km. In this altitude range, the increase of ClO concentration levels during sunrise has been recorded with a temporal resolution of one minute. During the daytime equilibrium, a maximum ClO level of 2.1 ± 0.3 ppbv has been observed at an altitude of 23.5 km. This equilibrium profile is validated against the ClO profile by the satellite instrument Microwave Limb Sounder (MLS) aboard EOS Aura. HCl profiles have been determined from two different isotopes – H35Cl and H37Cl – and are also validated against MLS. The precision of all profiles is well below 0.01 ppbv and the overall accuracy is therefore governed by systematic effects. The total uncertainty of these effects is estimated to be maximal 0.3 ppbv for ClO around its peak value at 23.5 km during the daytime equilibrium, and for HCl it ranges from 0.05 to 0.4 ppbv, depending on altitude. In both cases the main uncertainty stems from a largely unknown non-linear response in the detector.


2013 ◽  
Vol 6 (1) ◽  
pp. 721-766
Author(s):  
L. Millán ◽  
A. Dudhia

Abstract. Currently most of the high spectral resolution infrared limb sounders use subsets of the recorded spectra (microwindows) in their retrieval schemes to reduce the computing time of rerunning the radiative transfer model. A fast linear retrieval scheme is described which allows the whole spectral signature of the target molecule to be used. We determine how close the linearisation point needs to be to the solution in order to fall in the linear regime and also suggest an adjustment to the forward model and Jacobians to propagate the change in pressure and temperature on the gas concentration retrievals. As an example, this technique is implemented for the Michelson Interferometer for Passive Atmospheric Sounding instrument, but it is applicable to any high resolution limb sounder.


Sign in / Sign up

Export Citation Format

Share Document